

Kick off - Feature Store Summit 2025 Real-Time AI, LLMs and Vector Databases

Jim DowlingCEO & Co-Founder
Hopsworks

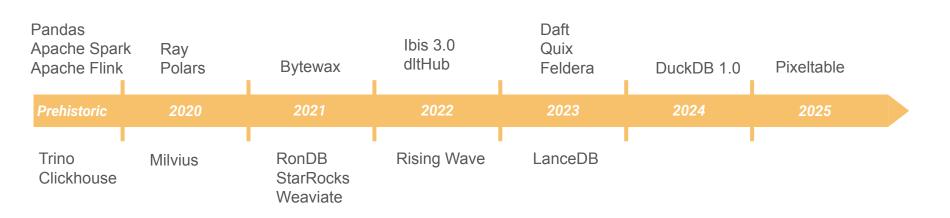
Feature Store Summit 2025

Real-Time AI, LLMs and Vector Databases

13 Presentations from 15 Speakers

Feature Store State of the Union in 2025

Cambrian Explosion in Open-Source Data Engines*



Building Machine Learning Systems

Batch, Real-Time, and LLM Systems

Scan the QR code and add a Promo Code: 'FS2025' to reserve your spot to receive the complete digital edition

Sovereign Al Blueprint

What does It Take to Build Truly Trustworthy AI? Download our comprehensive guide with market research at global scale on Sovereign Al.

In our survey of 100+ responses, we uncovered:

- What's actually working today
- The 3 barriers every team is facing
- How top organizations are overcoming them

Get practical insights from the teams already building Sovereign Al systems and see how you can move from vision to execution.

Link: https://www.hopsworks.ai/lp/blueprints/sovereign-ai

Today's Agenda

TODAY'S AGENDA:

All times are Pacific Time USA

Kick-off 8:30 AM Jim Dowling, CEO & Co-Founder, Hopsworks From Real-Time ML to Agents with Hopsworks 8:40 AM Jim Dowling, CEO & Co-Founder, Hopsworks Lyft's Feature Store: Architecture, Optimization, and Evolution 9:15 AM Rohan Varshney, Senior Software Engineer, Lyft Powering Real-Time AI at Pinterest: Feature Management and Serving at Scale with Galaxy and Scorpion 9:40 AM Andrey Gubenko, Software Engineer, Pinterest Li Tang, Software Engineer, Pinterest **Vector Store: Uber's Embedding Platform** 10:05 AM Divya Nagar, Staff Software Engineer, Uber Xiyuan Feng, Software Engineer, Uber 10:30 AM **Break**

TODAY'S AGENDA:

All times are Pacific Time USA

From EC2 to K8s: Zalando's Journey to Large-Scale, Real-Time Feature Serving. 10:40 AM Morteza Ghasempour, Senior Platform Engineer, Zalando **Predictive Analytics in Financial Industry** 11:05 AM Gokulram Krishnan, Manager - Al & Data, EY Real time ML at Roku 11:30 AM Krishna Chaitanya Chakka, Senior ML Engineer, Roku Bridging Real-Time and Batch: Declarative Feature Engineering with Apache Hamilton + Narwhals 11:55 AM Ryan Whitten, Director, ML Data Engineering, Best Egg 12:20 PM **Break How Coinbase Builds Sequence Features for Machine Learning** 12:30 PM Joseph McAllister, Senior Engineer, Coinbase

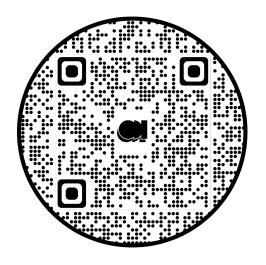
TODAY'S AGENDA:

All times are Pacific Time USA

12:50 PM		Real-time ML: Accelerating Python for inference (< 10ms) at scale Chase Haddleton, Software Engineer, Chalk	
13:10 PM		Real-Time Feature Aggregation at Scale: iFood's Path to Sub-Second Latency Willian Moreira, Machine Learning Platform Lead, iFood	
13:30 PM		Building a Generative Recommender with Chronon Varant Zanoyan, Co-Founder, Zipline Al	
13:50 PM		On-Demand Feature Life Cycle Management Aaron Hunsaker, Machine Learning Systems Engineer, Clicklease	
14:05 PM	4	Wrap-Up Jim Dowling, CEO & Co-Founder, Hopsworks	

THANKS TO OUR PARTNERS:

SCAN & JOIN OUR SLACK CHANNEL



featurestoreorg.slack.com

Get the chance to ask direct questions to the speakers after each session.

OUR COMMUNITY

Join our Slack channel

Follow us on Linkedin

Subscribe to our Newsletter

Submit Blogs on Medium

UP NEXT:

From Real-Time ML to Agents with Hopsworks

Jim DowlingCEO & Co-Founder
Hopsworks

From Real-Time ML to Agents with Hopsworks

Jim Dowling, CEO, Hopsworks

AGENDA

- Feature Store Architecture (Lakehouse First vs Real-Time First)
- Shift Left vs Shift Right Data Transformations
 - Shift-Right: Pushdown Aggregations in RonDB
 - Shift-Left: Rolling Aggregations with Incremental Computation
- Data Models for Feature Stores: Snowflake Schema beats Star Schema
- Real-Time Context Engineering with a feature store

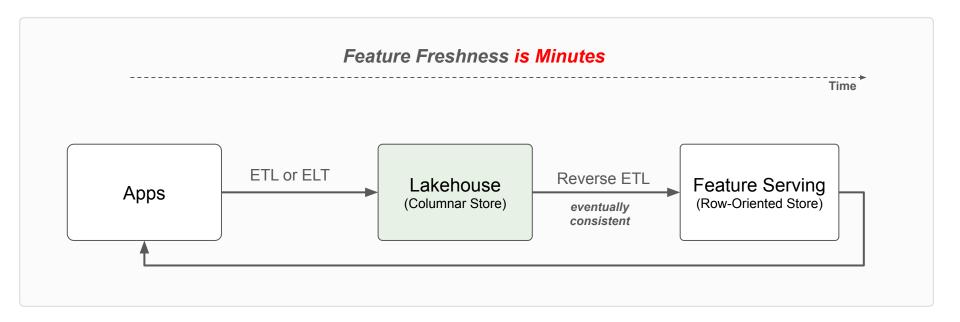
Building Machine Learning Systems

Batch, Real-Time, and LLM Systems

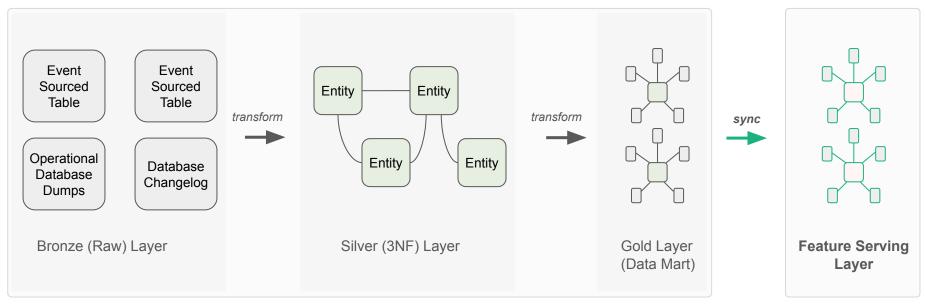
Scan the QR code and add a Promo Code: 'FS2025' to reserve your spot to receive the complete digital edition

Feature Store Architectures

Lakehouse-First Feature Store Architecture (Databricks/Vertex)

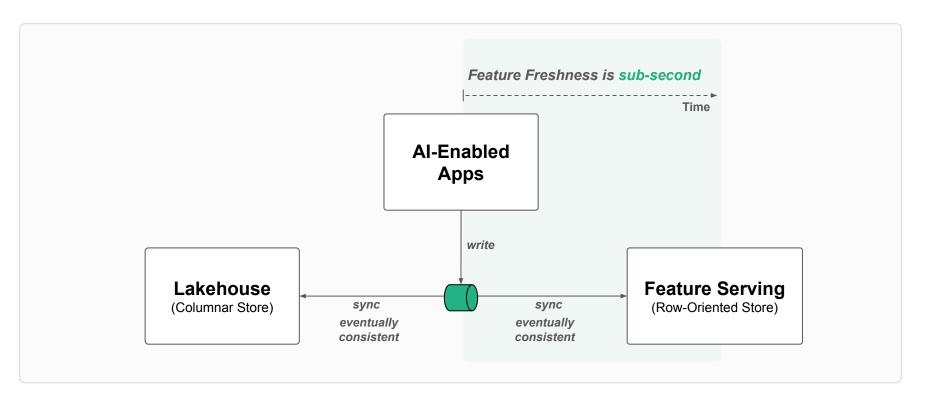


Lakehouse to Feature Serving. The Data model is Star Schema*.

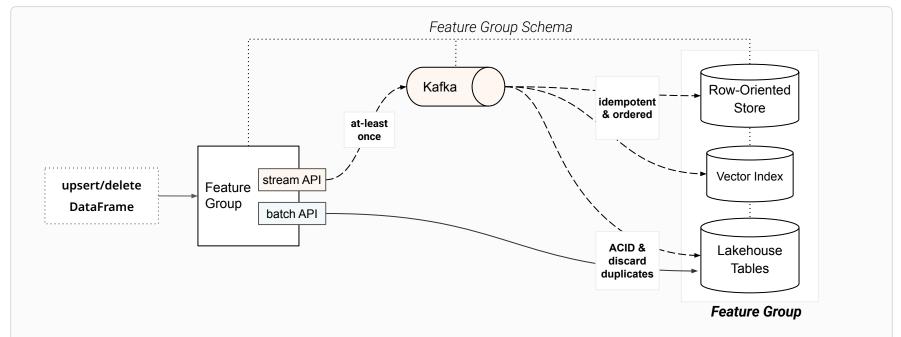


Lakehouse KV Store

Hopsworks: Real-Time First Feature Store Architecture



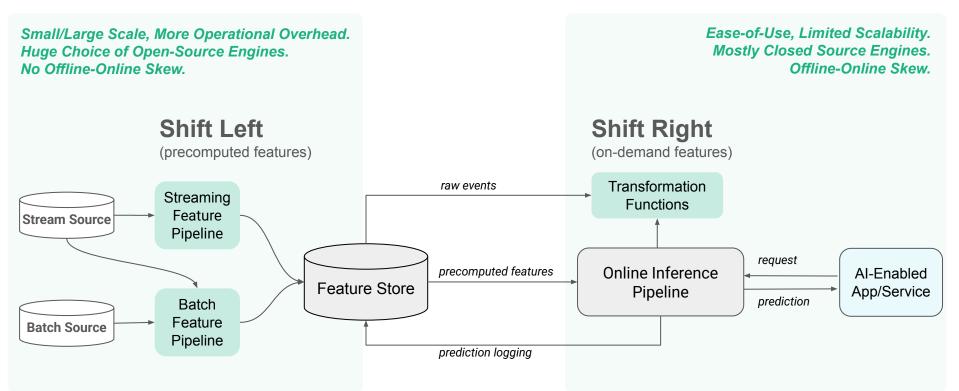
Hopsworks Feature Store Architecture



Idempotent and atomic updates ensure consistent data between offline and online stores*.

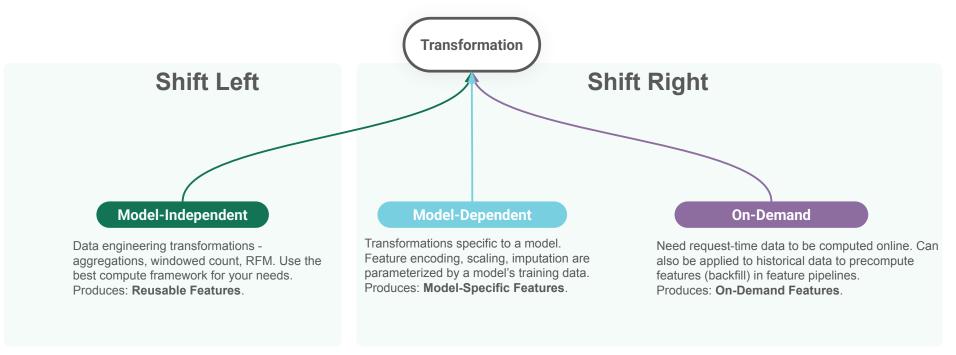
Data Transformations: Shift Left or Shift Right

Hopsworks supports the widest set of Shift Left and Shift Right Transformations



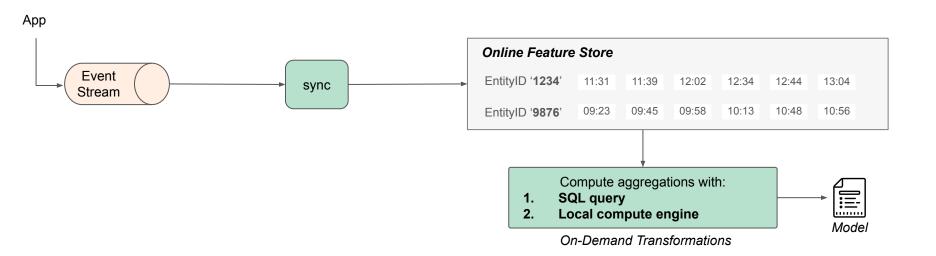
Shift-Left: Model-Independent Data Transformations

Shift-Right: Model-Dependent & On-Demand Data Transformations

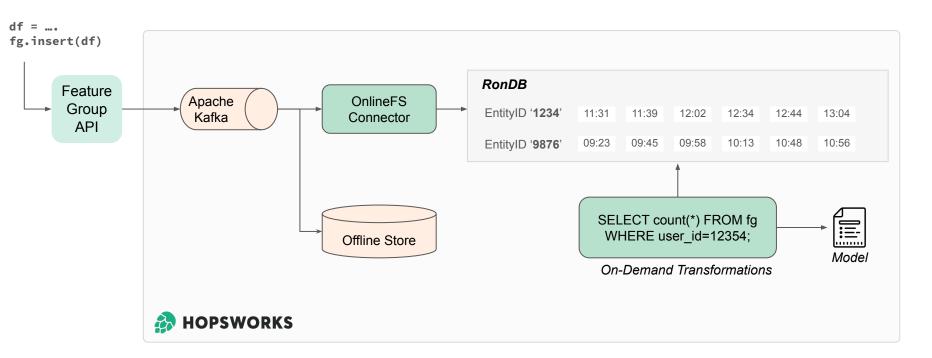


Chapter 6: Model-Independent Transformations
Chapter 7: Model-Dependent / On-Demand

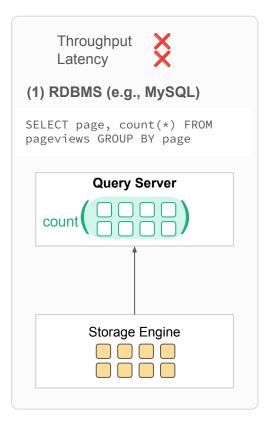
Shift Right: Compute Real-Time Features On-Demand

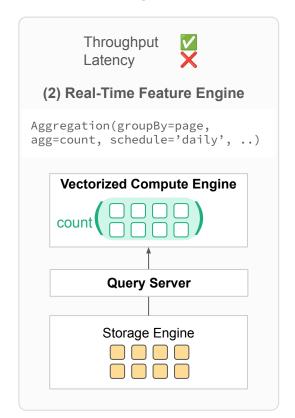


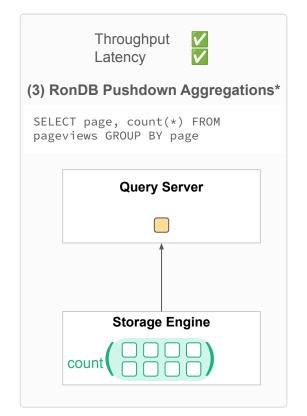
Shift Right: Compute Real-Time Features with Pushdown Aggregations in Hopsworks



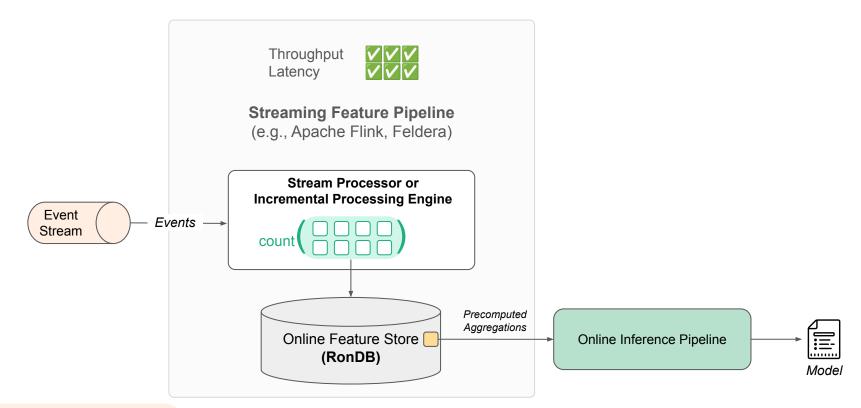
Aggregations in (1) RDBMS, (2) Feature Engine (3) RonDB Pushdown Aggregations







Shift Left to Streaming for Higher Throughput and Lower Latency



Time

Rolling Aggregations - the Queen of Real-Time Aggregated Features

Rolling aggregation Window size: 1hour Aggregation function: SUM

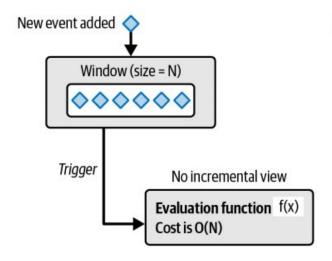
cc_num	event_time	amount	1hour_sum
1234 5678 9012 3456	Oh 1m	\$30.95	\$30.95
1234 5678 9012 3456	Oh 3m	\$1.99	\$32.94
1234 5678 9012 3456	Oh 7m	\$11.99	\$44.93
1234 5678 9012 3456	\$607.98		
1234 5678 9012 3456	Oh 52m	\$98.95	\$628.98
1234 5678 9012 3456	Oh 57m	\$113.99	\$727.93
1234 5678 9012 3456	1h 2m	\$10.00	\$841.92
1234 5678 9012 3456	1h 7m	\$44.95	\$845.87

SUM=\$845.87 over last 60 mins

Suboptimal Alternatives

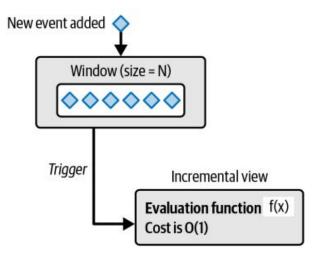
- Sliding Window Aggregations
 - Feature freshness == slide length
- Tiled Time-Window Aggregations
 - Higher latency at online inference
 - Still requires a streaming pipeline

Incremental View Maintenance reduces Computational Complexity for Rolling Aggregations



Full recompute of f(x) over all N events for every new event (Apache Spark Streaming, Apache Flink, etc.)

Apache Flink O(N)

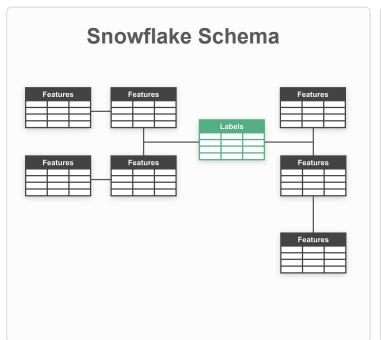


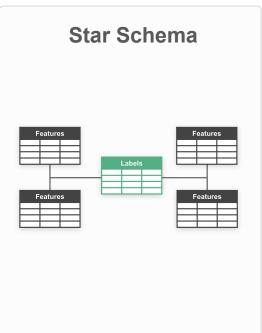
Incremental view recomputes only new events with the evaluation function (Feldera)

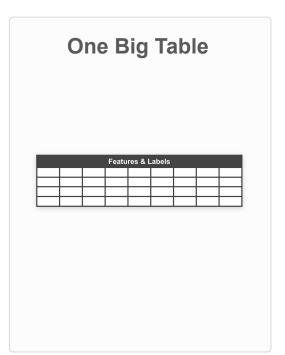
Feldera O(1)

Data Modelling for Feature Stores

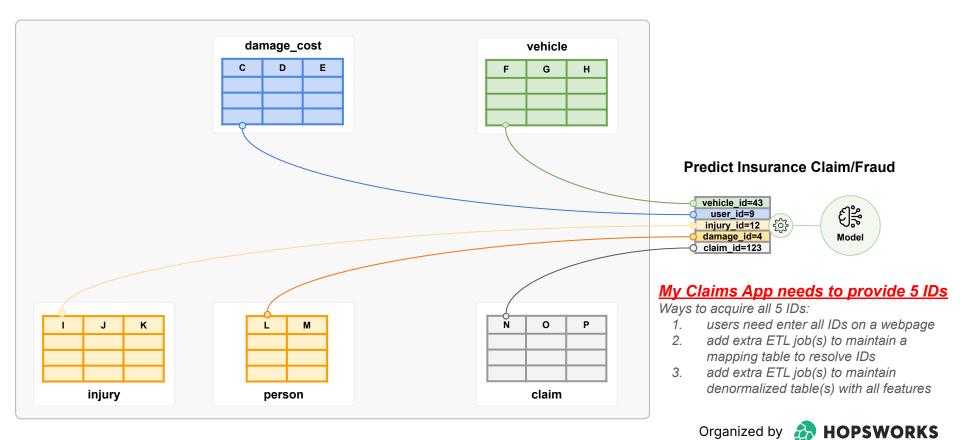
Data Models for Feature Stores



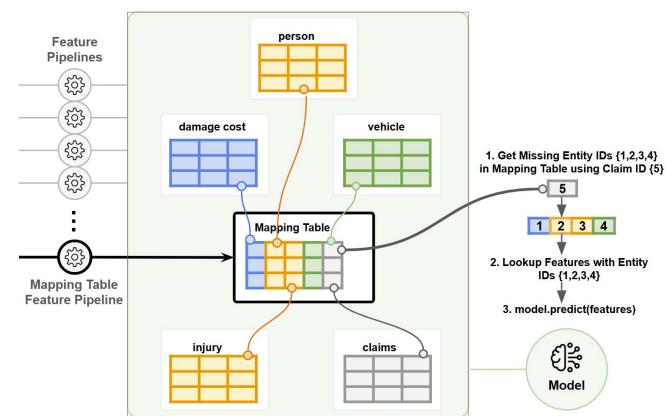




Limitations of Star Schema Data Model for Insurance Claims Use Case

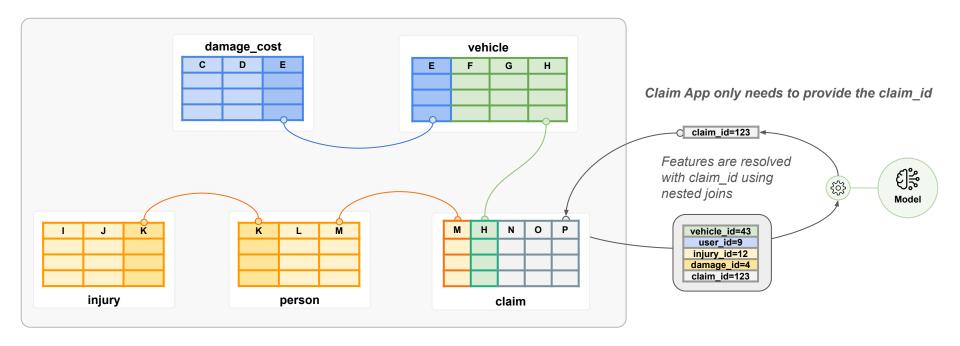


"Simplify" Claims App so users only need to provide the claim_id



How can we avoid adding a Mapping Table and its pipeline?

Snowflake Schema Data Model solves the Mapping Table Problem*



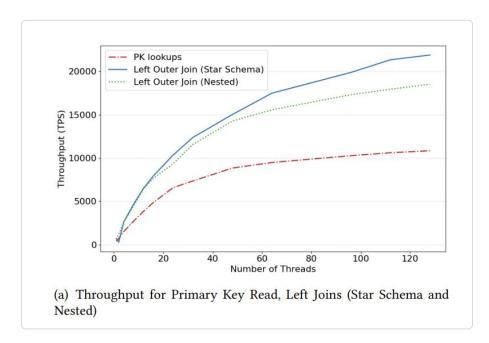
Snowflake Schema in Hopsworks

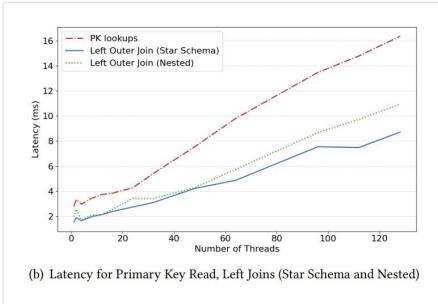
```
vehicle_fg, damage_cost_fg, claim_fg, person_fg, injury_fg = fs.get_feature_group(...)
                                                                                                             Python
person_subtree = person_fg.select_features() \
           .join(injury_fg.select_features())
vehicle_subtree = vehicle_fg.select_features() \
           .join(damage_cost_fg.select_features())
                                                                                                             Python
                                                                           - Feature Selection
all_features = claim_fg.select_features() \
           .join(person_subtree) \
           .join(vehicle_subtree)
                                                                                                             Python
fv = fs.create_feature_view(name="claims_fv", version=1,
                   query=all_features,
                   labels=['is_fraud']
                                                                                                             Python
```


Snowflake Schema in Hopsworks

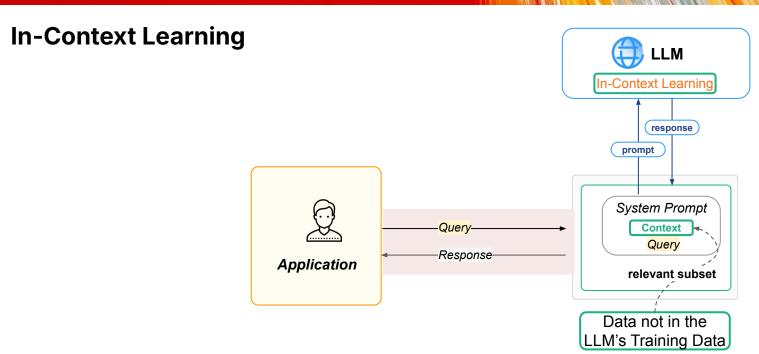
```
# Model Training
X_train, X_test, y_train, y_test = fv.train_test_split(test_size=0.2)
model.train(X_train, y_train)
mr = fs.get_project().get_model_registry()
fraud_model = mr.python.create_model(name="claims_fraud",
   metrics=evaluation_dict,
    feature_view=feature_view,
                                                                           Pushdown Left JOIN
mr.save dir("dir with serialized model")
                                                                                                            Python
# Model Deployment and Online Inference
feature_vector = fv.get_feature_vector(entry={"claim_id": 1234})
prediction = model.predict(feature_vector)
fv.log(feature_vector, prediction)
                                                                                                            Python
```

Pushdown Left JOINs on RonDB have better performance*



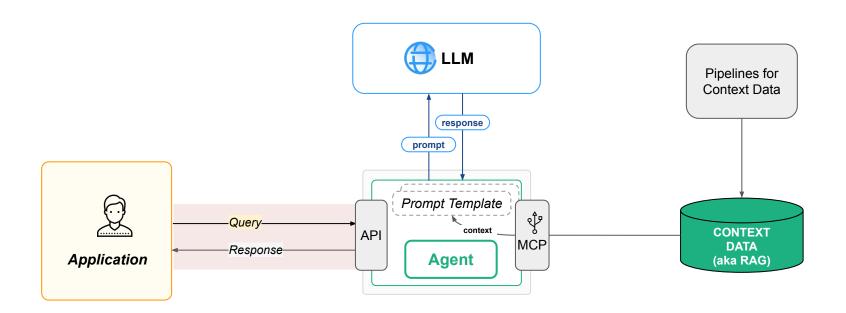


From Real-Time Features to Context



In-Context Learning is the dominant paradigm for incorporating new data in LLMs, lording over the alternative approach of fine-tuning open-source foundation LLMs with your new data.

Context Data for Agents

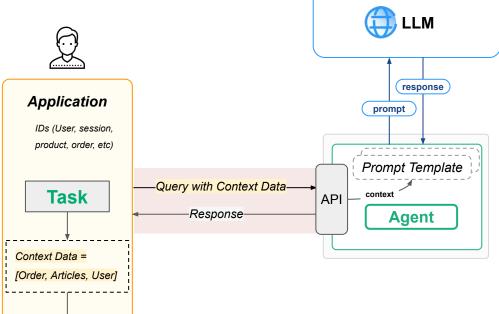


Context Data is primarily (1) private data and (2) recent data (post LLM training cutoff date)

Application Data as Context

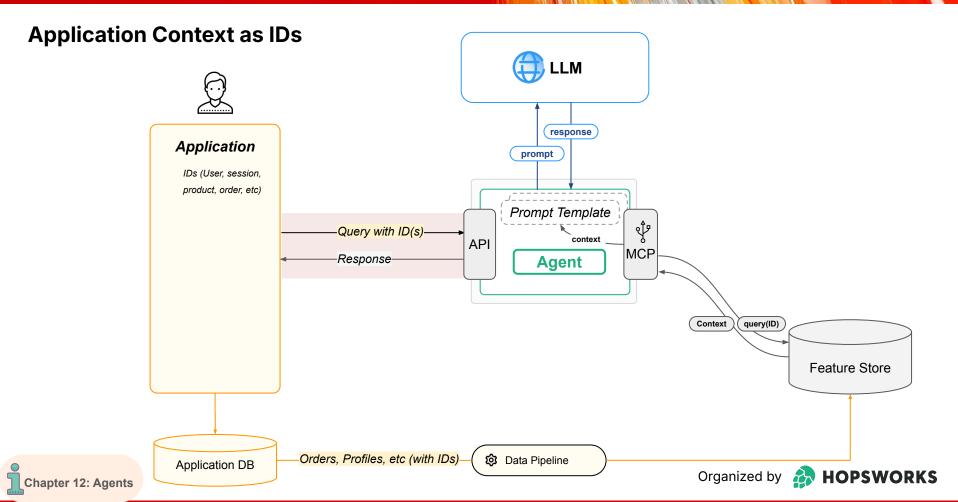
query

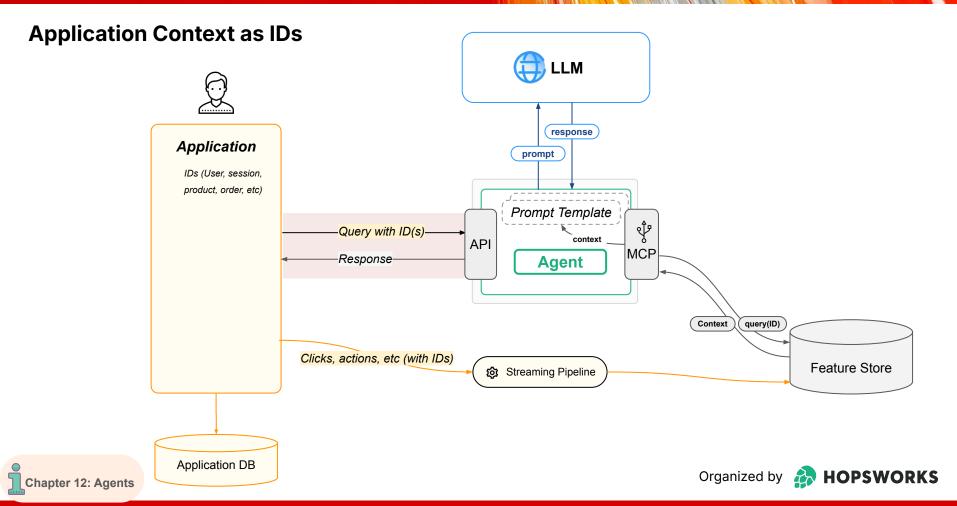
Application DB

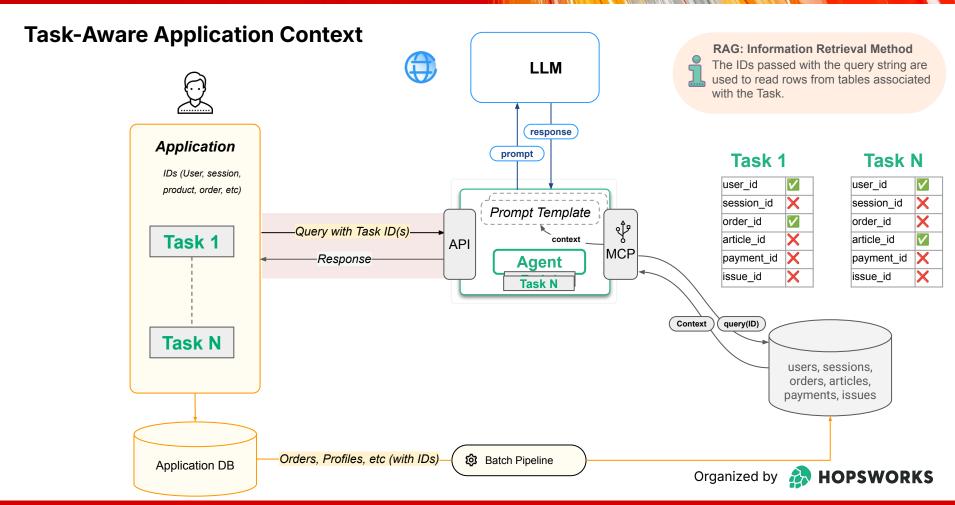


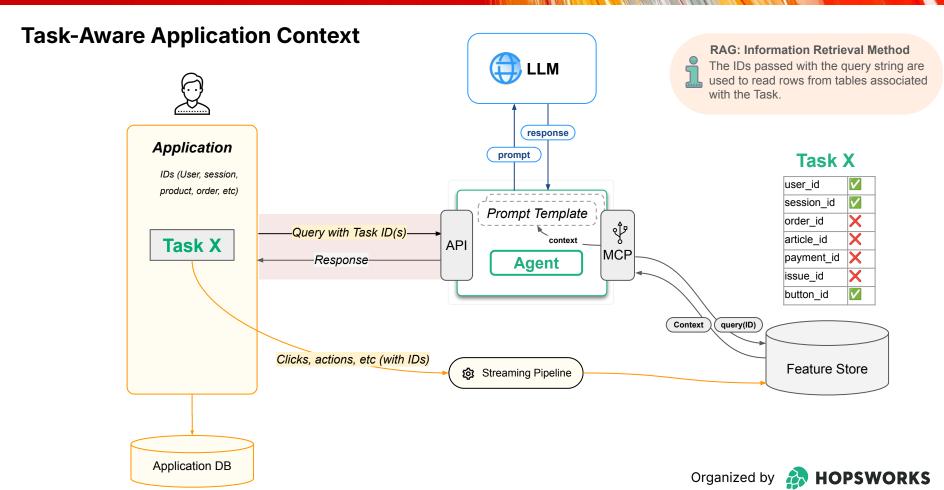
RAG: Information Retrieval Method It is the application developer's job to retrieve and send context data to the agent.

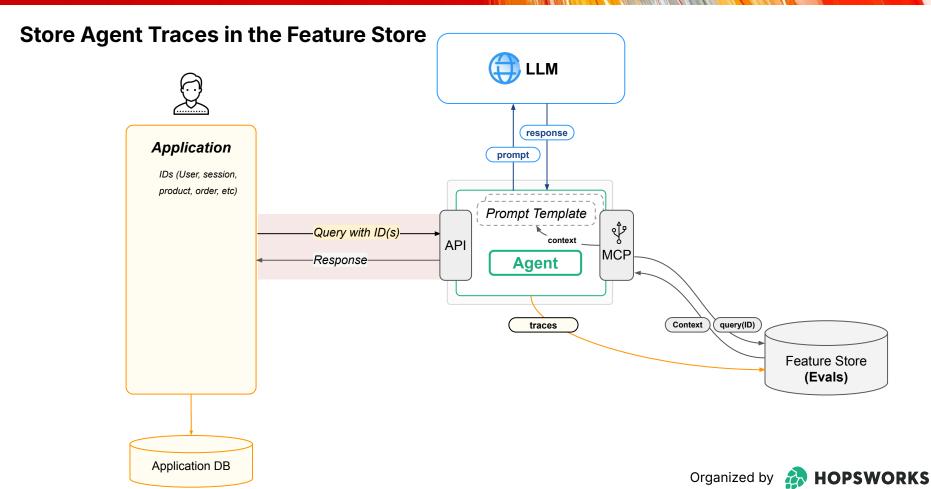
It is challenging for app developers to write code to retrieve the correct context data!



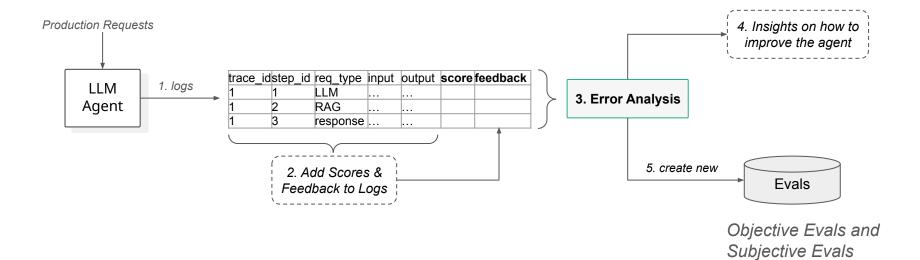




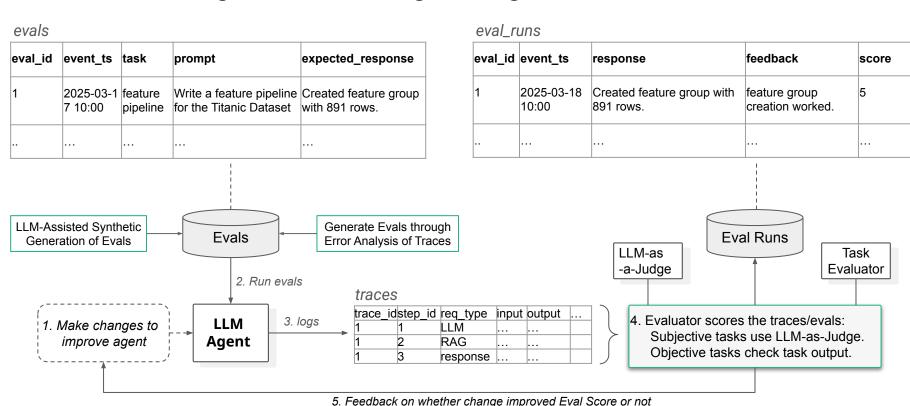


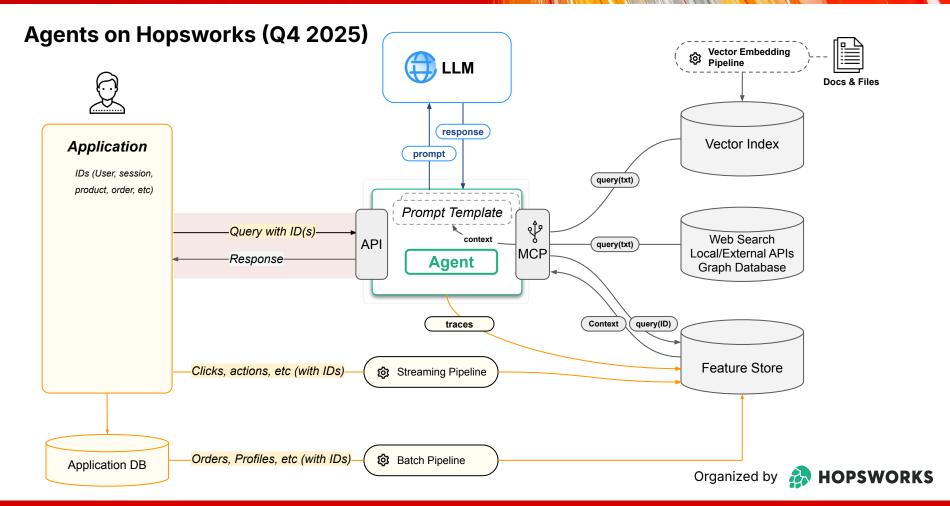


Error Analysis with Agent Log Traces



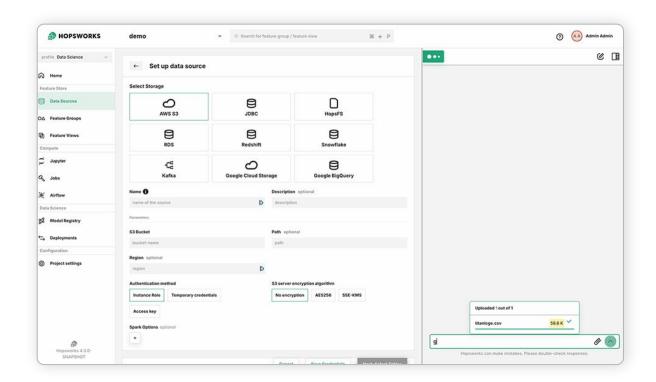
Automated Testing: Evaluate Changes to Agents with Evals

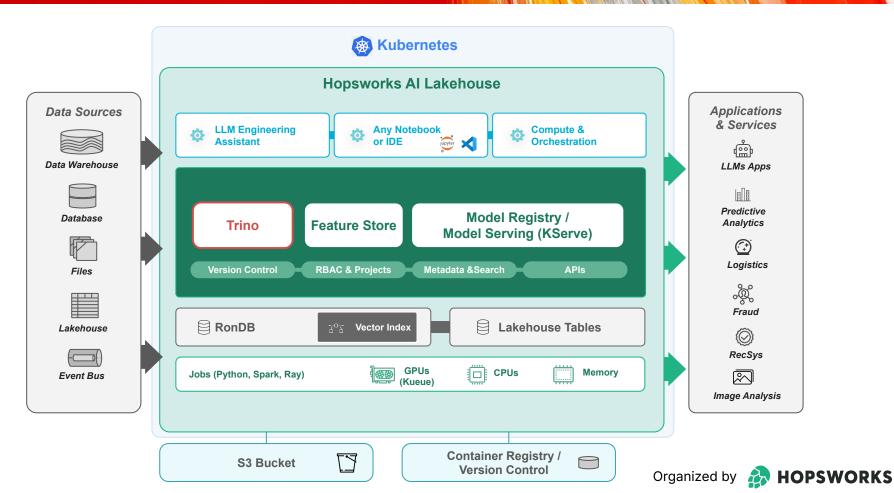




What else is new in Hopsworks?

Brewer (Q4 2025)





Building Machine Learning Systems

Batch, Real-Time, and LLM Systems

Scan the QR code and add a Promo Code: 'FS2025' to reserve your spot to receive the complete digital edition

