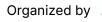


Real time ML at ROKU

Krishna Chaitanya Chakka

Sr ML Engineer



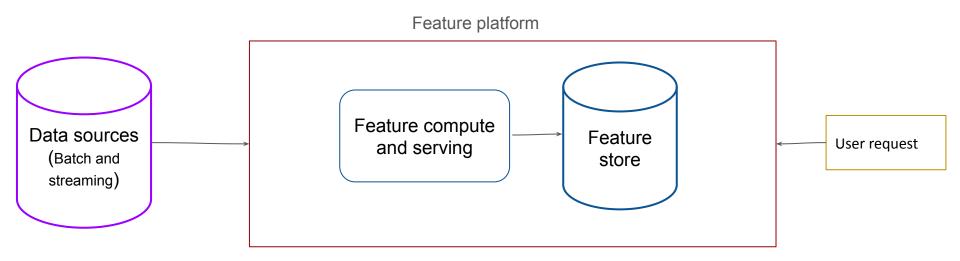
Scale at Roku

90 Million Streaming Households

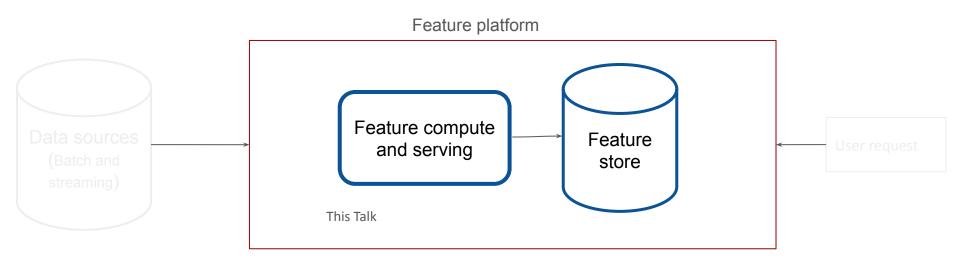
- Ads
 - Ad requests 5B/day
- Search and Recs
 - Batch feature requests : 2M req/sec
 - Real time feature requests: 1200 req/sec (rapidly increasing this scale)

Feature Platform

Feature Platform



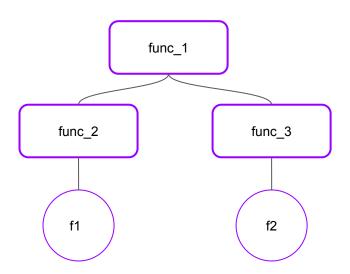
Feature Platform

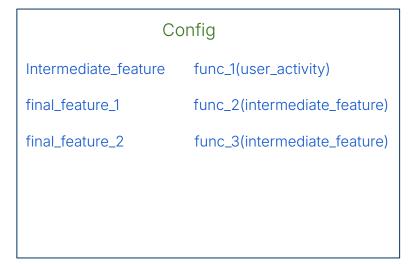


Before Chronon

At Roku, custom frameworks built for different teams

Method 1: DAG based Python processors





Limitations

- Efficiency
 - Running python processes was slow

- No Real time feature computation
 - Have to implement java equivalent infrastructure

- No Feature Store
 - Compute feature transform everytime we train the model

Method 2

Experimentation with new real time features

- Log and Wait approach
- Log new features and wait till training data is generated
- Multiple feature definitions for the same feature.

Limitations

- Longer development times
 - Wait for training data to be logged.
- Can impact production if testing larger number of features.
- Not reusable for other applications
 - o Time sensitive.

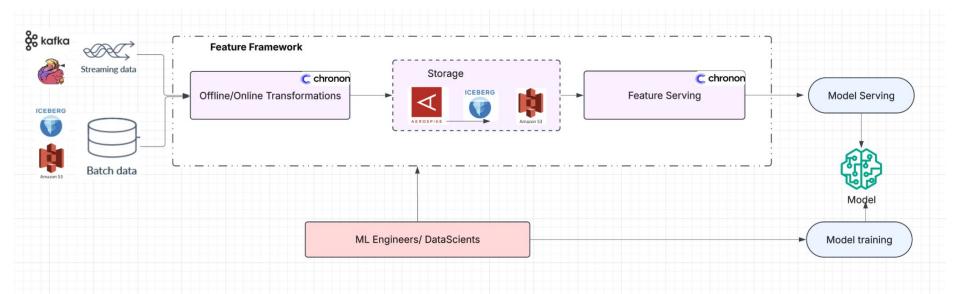
Chronon as feature platform

Chronon

- OpenSource from Airbnb
 - Active community
 - Weekly office hours quickly help in resolving issues.

- Python API with Scala Spark
 - Write chronon config once and deploy to get features
 - Increase developer velocity with model testing

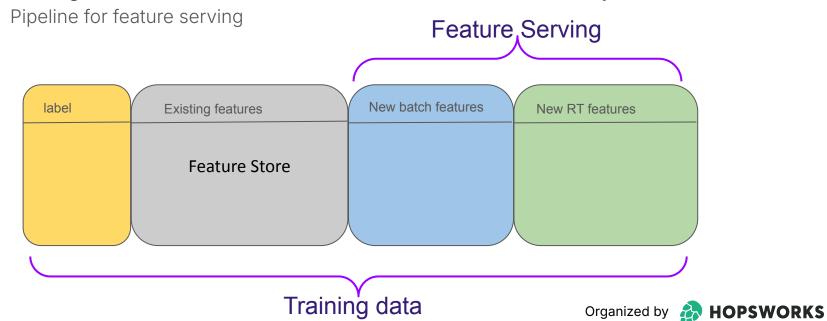
High level Architecture



Feature lifecycle

Feature Compute: Backfill

Training data with new batch and NRT features for a window (180 days).

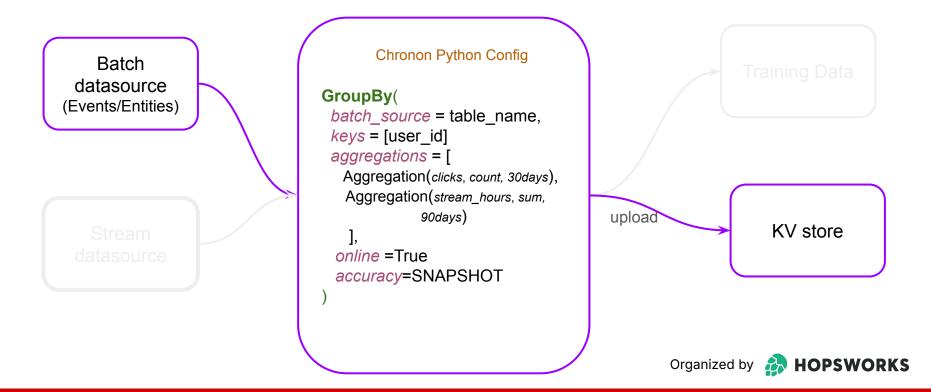


Batch features - Serving

- Example feature
 - count_of_clicks_on_content_id_past_90days

- Run a nightly job to compute features for all user_ids
- Upload the output to online KV store for serving

Batch features - Serving

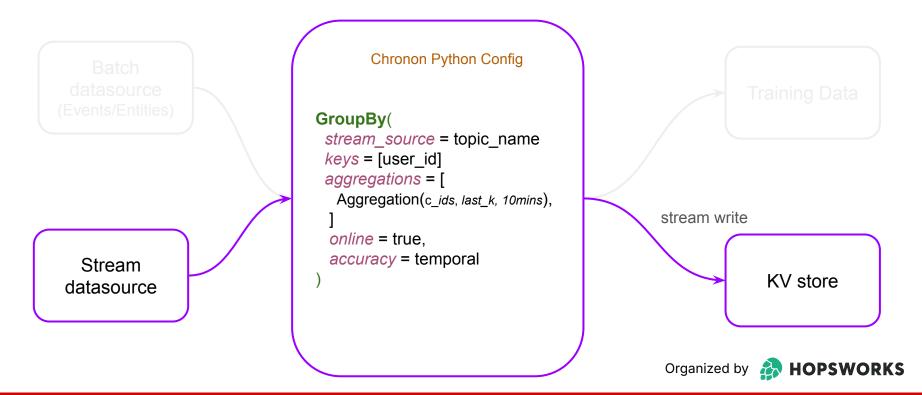


Serving - Real time features - Streaming Source

- Example feature
 - count_of_clicks_on_content_id_past_10mins

- Read events from flink and generate feature value for a small window (eg: 2 mins)
 - At request time, read 5 windows (2 min each) and aggregate the feature.

Real time features - Serving

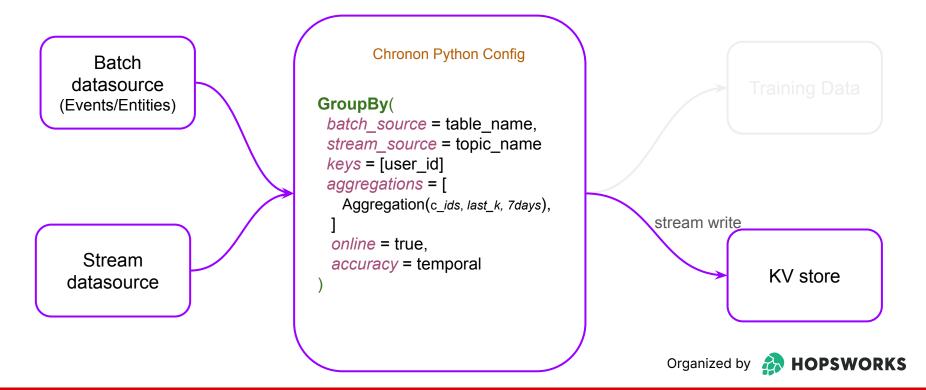


Serving - Real time features - Stream and Batch Source

- Example features
 - count_of_clicks_on_content_id_past_7days
 - o last_k_genres_clicked_past_2days (k = 10)

- Read events from flink and generate feature value for a small window (eg: 2 mins)
 - At request time, read 5 windows (2 min each) from kv store
- Read daily precomputed batch aggregates from kv store
- Combine feature values from both sources.

Real time features - Serving



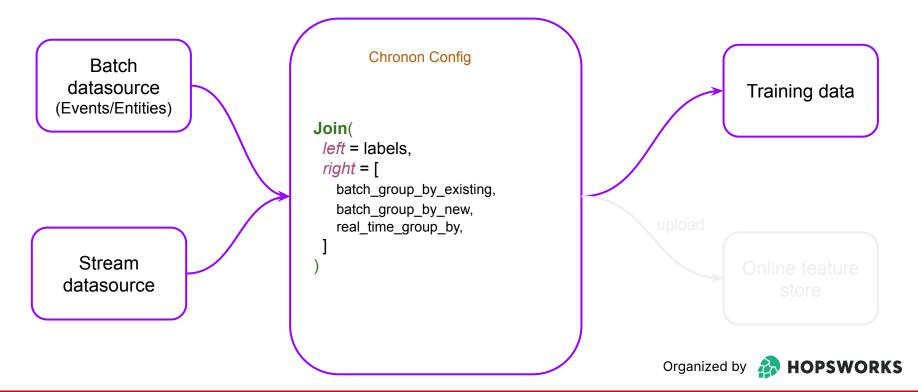
Feature Serving

Simple API to fetch features after chronon config deployment

- Feature Freshness: 1-2 mins
 - Any user event is available in 1-2 mins

```
feature_fetch(
   table_name : chronon_output
   keys: user id,
   col_names: [feat1, feat2],
```


Training data



Chronon Optimizations - Bloom filter

- Left Joins
 - Bloom filter to filter out features (right parts) that is not in the label dataset
 - Huge time savings during data shuffle.

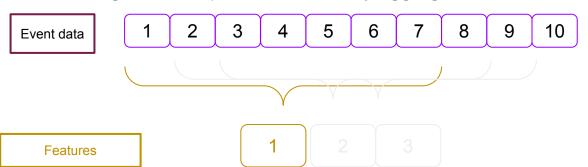
Backfill Window: 6 months, Feature window: 7 days

Sliding window optimizations - 7day aggregation

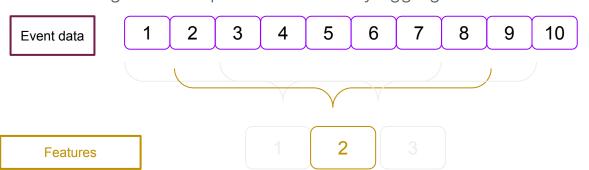
Event data 1 2 3 4 5 6 7 8 9 10

Features 1 2 3

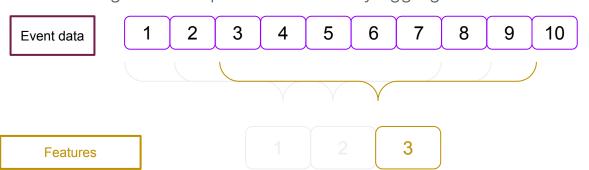
Sliding window optimizations - 7day aggregation

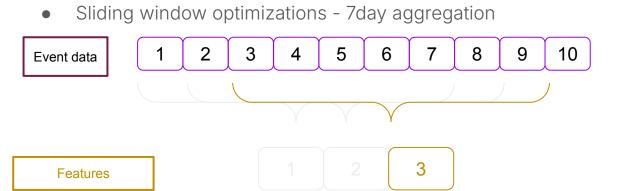


Sliding window optimizations - 7day aggregation



Sliding window optimizations - 7day aggregation





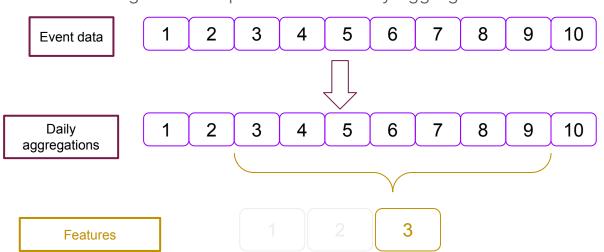
Event level daily aggregation is computed only once per backfill.

Features = Aggregation over daily partial aggregates.

Chronon: Roku contributions

WIP: Incremental Aggregations - Batch

Sliding window optimizations - 7day aggregation



Instead of events, compute features from intermediate daily aggregations

Chronon: Roku contributions

- Bazel
 - o Spark 3.5

Bazel publish artifacts

Thank You

