

This dictionary/glossary covers terms from MLOps, data engineering,
and feature stores, but does not cover terms from the broader ML
(Machine Learning) algorithms and frameworks space. MLOps is the
roadmap you follow to go from training models in notebooks to building
production ML systems. MLOps is a set of principles and practices that
encompass the entire ML System lifecycle, from ideation to data
management, feature creation, model training, inference, observability, and
operations. MLOps is based on three principles: observability,
automated testing, and versioning of ML artifacts.

This version of the dictionary highlights the 25 most read and searched
terms since it was first published one year ago. The entries in this edition
reflect current trends in the world of AI and MLOps and give us an idea of
the direction in which the industry is leaning.

www.hopsworks.ai/mlops-dictionary - 2

http://www.hopsworks.ai/mlops-dictionary

INDEX
B 4

Batch Inference Pipeline 4
C 5

Context Window for LLMs 5
F 6

Feature 6
Feature Pipeline 6
Feature Store 7
Feature Type 26
Flash Attention 27
Function Calling with LLMs 29

G 31
Gradient Accumulation 31

I 33
In Context Learning (ICL) 33
Inference Pipeline 36
Instruction Dataset for fine-tuning LLMs 37

L 38
Lagged features 38
LLMs - Large Language Models 38
LLM temperature 40

M 43
ML System 43
Model Architecture 46
Model Bias 46

P 47
Parameter-Efficient Fine-Tuning (PEFT) of LLMs 47

R 47
Retrieval Augmented Generation (RAG) for LLMs? 47
RoPE Scaling 50

S 52
Similarity Search 52

T 53
Two-Tower Embedding Model 53

V 57
Vector Database 57
vLLM 59

www.hopsworks.ai/mlops-dictionary - 3

http://www.hopsworks.ai/mlops-dictionary

B
● Batch Inference Pipeline

What is a batch inference pipeline?
 A batch inference pipeline is a program that takes as input a batch of data and a model,
and outputs predictions that are typically written to some sink, such as a database.

Why are batch inference pipelines important?
 Batch inference pipelines are important because they allow for efficient and scalable
inference on large volumes of data using a trained model. Batch inference pipelines are
typically run on a schedule (e.g., daily or hourly) and are used to drive dashboards and
operational ML systems (that use the predictions for intelligent services).

 Example of a batch inference application
 A Spark program reads all of the new inference data that has arrived in the previous 24
hours as a DataFrame. The Spark program downloads the model from the model
registry, broadcasts it to all executors, and then a map function calls predict on the
model for each row in the DataFrame, returning the predictions as a DataFrame. The
predictions DataFrame is then stored in a database from where it is consumed by a
Dashboard or operational ML system.

www.hopsworks.ai/mlops-dictionary - 4

https://www.hopsworks.ai/dictionary/model-registry
https://www.hopsworks.ai/dictionary/model-registry
https://www.hopsworks.ai/dictionary/ml
http://www.hopsworks.ai/mlops-dictionary

C
● Context Window for LLMs

What is a context window for LLMs?
The context window of LLMs is the number of tokens the model can take as input when
generating responses. For example, in GPT-3 the context window size is 2K (2000) and
in GPT-4 it is a larger 32K. There is a trend and demand for increasingly larger context
window sizes in LLMs. Larger context windows improve LLM performance and their
usefulness across various applications.

Why is a large context window size important?
Larger context window sizes increase the ability to perform in-context learning in
prompts. That is, you can provide more examples and/or larger examples as prompt
inputs, enabling the LLM to give you a better answer. For example, a LLM could take an
entire document as input, helping with comprehension of the full scope of an article. This
ability enables LLM to produce more contextually relevant responses by leveraging a
more comprehensive understanding of the input.

Another example would be providing the LLM with context information that was not
available at the time the LLM was trained - if a user asked GPT-4 “who won the world
cup in 2022?”, it doesn’t know the answer (it’s cut-off was before that date). However, a
client can use the query to find a relevant document about the 2022 world cup (e.g.,
using similarity search in a vector database) and add that document to the prompt (e.g.,
it might be the wikipedia article on the 2022 world cup). The LLM can now answer the
query (“Argentina” is the correct answer) as the answer was in the document included in
the prompt.

Challenges in increasing the context window size
The costs increase of larger context windows appear to increase quadratically as the
number of tokens is increased, e.g., going from 2K to 4K with GPT-3 to GPT-3.5 was not
twice as computationally expensive, but 4x the computationally cost. Research is
ongoing on decreasing the cost.

Another challenge is that, based on Liu et al, it appears that adding relevant context at
the beginning or the end of a prompt improves the performance of LLMs, compared to
including the relevant context in the middle of the prompt. It is unclear how this
observation will affect larger context windows.

www.hopsworks.ai/mlops-dictionary - 5

https://hazyresearch.stanford.edu/blog/2023-03-27-long-learning
https://hazyresearch.stanford.edu/blog/2023-03-27-long-learning
https://arxiv.org/abs/2307.03172
http://www.hopsworks.ai/mlops-dictionary

F
● Feature

What are features in Machine Learning?
A feature is a measurable property of some data-sample that is used as input for a ML
model for training and serving. A feature should have predictive power for the model it is
being used in.

What questions do I need to ask about whether it is ok to use a particular feature
in my model or not?
Predictive power is a necessary but not a sufficient condition for including a feature in a
model. The feature

● should have predictive power for your model,
● should be feasible for use in the model (i.e., you are able to compute the feature

and use it when needed - online or offline),
● should not be redundant (e.g., highly correlated with an existing feature),
● should not be cost-prohibitive (i.e., using the feature means the model will not

generate a ROI), and
● should not be prohibited from use or unethical to use.

How important is it to select or create good features?
Features matter because they directly impact the accuracy and performance of machine
learning models. Choosing the right set of features is critical for building effective
models, and feature engineering (now often called data-centric AI) is an iterative process
of adding and removing features to find the best model given the available data and the
available resources for training and inference.

 Example of features
 In a model that tries to predict fraud for credit card transactions, the features might
include the transaction amount and location for the current transactions as well as the
number and location of transactions in recent windows of time (the last 5 minutes, 30
minutes, 1 hour, 6 hours). These features can help the model identify patterns such as
chain attacks and geographic attacks that are indicative of fraudulent behavior.

● Feature Pipeline
What is a feature pipeline in machine learning?
A feature pipeline is a program that orchestrates the execution of a dataflow graph of
feature functions (transformations on input data to create unencoded feature data),
where the computed features are written to one or more feature groups. A feature
pipeline can also include reading the input data from data sources, data validation, and
any other steps needed when computing features.

www.hopsworks.ai/mlops-dictionary - 6

https://www.hopsworks.ai/dictionary/orchestration
https://www.hopsworks.ai/dictionary/feature-function
https://www.hopsworks.ai/dictionary/feature-function
https://www.hopsworks.ai/dictionary/transformation
https://www.hopsworks.ai/dictionary/feature-groups
https://www.hopsworks.ai/dictionary/data-validation-for-features
http://www.hopsworks.ai/mlops-dictionary

Why do I need a feature pipeline?
Feature pipelines are needed to enable features to be computed on a schedule, or if
they are streaming feature pipelines, run 24x7. The feature pipeline encapsulates the
logic for computing features in feature groups, defines the data validation logic, and
writes the features to feature groups. A batch feature pipeline needs to be run on a
schedule by an orchestration engine, such as Airflow, Dagster, or, for simple cron-based
scheduling, Modal.

What are the data sources for feature pipelines?
Feature pipelines read their input data from data sources such as data warehouses,
message buses, databases, object stores, and Http APIs. The data sources can provide
input live data, during scheduled executions, or historical data when backfilling feature
groups. Feature pipelines should scale to handle the largest expected input volume size.

An example of the steps in feature pipeline might include:
1. Data ingestion: Raw data is read from various data sources for processing.
2. Data/feature validation: The raw data and/or feature data is validated to ensure

that it is accurate, complete, and consistent.
3. Feature extraction/transformation: Relevant features are extracted from the

raw data and transformed into a format that is optimized for machine learning
models using techniques such as filtering, aggregation, dimensionality reduction
(embeddings, PCA), binning, and feature crossing.

4. Feature storage: The features are stored in feature groups in the feature store
for access training and inference pipelines.

● Feature Store
What is a feature store?
A feature store is a data platform that supports the development and operation of
machine learning systems by managing the storage and efficient querying of feature
data. Machine learning systems can be real-time, batch or stream processing systems,
and the feature store is a general purpose data platform that supports a multitude of
write and read workloads, including batch and streaming writes, to batch and point read
queries, and even approximate nearest neighbor search. Feature stores also provide
compute support to ML pipelines that create and use features, including ensuring the
consistent computation of features in different (offline and online) ML pipelines.

What is a feature and why do I need a specialized store for them?
A feature is a measure property of some entity that has predictive power for a machine
learning model. Feature data is used to train ML models, and make predictions in batch
ML systems and online ML systems. Features can be computed either when they are
needed or in advance and used later for training and inference. Some of the
advantages of storing features is that they can be easily discovered and reused in
different models, reducing the cost and time required to build new machine learning

www.hopsworks.ai/mlops-dictionary - 7

https://www.hopsworks.ai/dictionary/ml-systems
https://www.hopsworks.ai/dictionary/ml-systems
https://www.hopsworks.ai/dictionary/ml-pipeline
https://www.hopsworks.ai/dictionary/training-data
https://www.hopsworks.ai/dictionary/inference-data
http://www.hopsworks.ai/mlops-dictionary

systems. For real-time ML systems, the feature store provides history and context to
(stateless) online models. Online models tend to have no local state, but the feature
store can enrich the set of features available to the model by providing, for example,
historical feature data about users (retrieved with the user’s ID) as well as contextual
data, such as what’s trending. The feature store also reduces the time required to make
online predictions, as these features do not need to be computed on-demand, - they are
precomputed.

How does the feature store relate to MLOps and ML systems?

In a MLOps platform, the feature store is the glue that ties together different ML pipelines
to make a complete ML system:

● feature pipelines compute features and then write those features (and
labels/targets) to it;

● training pipelines read features (and labels/targets) from it;
● Inference pipelines can read precomputed features from it.

The main goals of MLOps are to decrease model iteration time, improve model
performance, ensure governance of ML assets (feature, models), and improve
collaboration. By decomposing your ML system into separate feature, training, and
inference (FTI) pipelines, your system will be more modular with 3 pipelines that can be
independently developed, tested, and operated. This architecture will scale from one
developer to teams that take responsibility for the different ML pipelines: data engineers
and data scientists typically build and operate feature pipelines; data scientists build and
operate training pipelines, while ML engineers build and operate inference pipelines. The
feature store enables the FTI pipeline architecture, enabling improved communication
within and between data, ML, and operations teams.

www.hopsworks.ai/mlops-dictionary - 8

https://www.hopsworks.ai/dictionary/real-time-machine-learning
https://www.hopsworks.ai/dictionary/mlops
https://www.hopsworks.ai/dictionary/feature-pipeline
https://www.hopsworks.ai/dictionary/training-pipeline
https://www.hopsworks.ai/dictionary/inference-pipeline
http://www.hopsworks.ai/dictionary/model-performance
http://www.hopsworks.ai/dictionary/model-performance
https://www.hopsworks.ai/dictionary/ml-artifacts
https://www.hopsworks.ai/post/mlops-to-ml-systems-with-fti-pipelines
https://www.hopsworks.ai/post/mlops-to-ml-systems-with-fti-pipelines
http://www.hopsworks.ai/mlops-dictionary

What problems does a feature store solve?
The feature store solves many of the challenges that you typically face when you (1)
deploy models to production, and (2) scale the number of models you deploy to
production, and (3) scale the size of your ML teams, including:

● Support for collaborative development of ML systems based on centralized,
governed access to feature data, along with a new unified architecture for ML
systems as feature, training and inference pipelines;

● Manage incremental datasets of feature data. You should be able to easily add
new, update existing, and delete feature data using DataFrames. Feature data
should be transparently and consistently replicated between the offline and
online stores;

● Backfill feature data from data sources using a feature pipeline and backfill
training data using a training pipeline;

● Provides history and context to stateless interactive (online) ML applications;
● Feature reuse is made easy by enabling developers to select existing features

and reuse them for training and inference in a ML model;
● Support for diverse feature computation frameworks - including batch,

streaming, and request-time computation. This enables ML systems to be
built based on their feature freshness requirements;

● Validate feature data written and monitor new feature data for drift;
● A taxonomy for data transformations for machine learning based on the

type of feature computed (a) reusable features are computed by
model-independent transformations, (b) features specific to one model are
computed by model-dependent transformations, and (c) features computed with
request-time data are on-demand transformations. The feature store provides
abstractions to prevent skew between data transformations performed in more
than one ML pipeline.

● A point-in-time consistent query engine to create training data from historical
time-series feature data, potentially spread over many tables, without future data
leakage;

● A query engine to retrieve and join precomputed features at low latency for
online inference using an entity key;

● A query engine to find similar feature values using embedding vectors.

www.hopsworks.ai/mlops-dictionary - 9

https://www.hopsworks.ai/dictionary/backfill-features
https://www.hopsworks.ai/dictionary/feature-reuse
https://www.hopsworks.ai/dictionary/feature-freshness
https://www.hopsworks.ai/dictionary/data-transformation
https://www.hopsworks.ai/dictionary/data-leakage
https://www.hopsworks.ai/dictionary/data-leakage
http://www.hopsworks.ai/mlops-dictionary

The table below shows you how the feature store can help you with common ML
deployment scenarios.

For just putting ML in production, the feature store helps with managing incremental
datasets, feature validation and monitoring, where to perform data transformations, and
how to create point-in-time consistent training data. Real-Time ML extends the
production ML scenario with the need for history and context information for stateless
online models, low latency retrieval of precomputed features, online similarity search,
and the need for either stream processing or on-demand feature computation. For the
ML at large scale, there is also the challenge of enabling collaboration between teams of
data engineers, data scientists, and ML engineers, as well as the reuse of features in
many models.

Collaborative Development
Feature stores are the key data layer in a MLOps platform. The main goals of MLOps
are to decrease model iteration time, improve model performance, ensure governance of
ML assets (feature, models), and improve collaboration. The feature store enables
different teams to take responsibility for the different ML pipelines: data engineers and
data scientists typically build and operate feature pipelines; data scientists build and
operate training pipelines, while ML engineers build and operate inference pipelines.

www.hopsworks.ai/mlops-dictionary - 10

http://www.hopsworks.ai/mlops-dictionary

They enable the sharing of ML assets and improved communication within and between
teams. Whether teams are building batch machine learning systems or real-time
machine learning systems, they can use shared language around feature, training, and
inference pipelines to describe their responsibilities and interfaces.

A more detailed Feature Store Architecture is shown in the figure below.

Its historical feature data is stored in an offline store (typically a columnar data store), its
most recent feature data that is used by online models in an online store (typically a
row-oriented database or key-value store), and if indexed embeddings are supported,
they are stored in a vector database. Some feature stores provide the storage layer as
part of the platform, some have partial or full pluggable storage layers.

The machine learning pipelines (feature pipelines, training pipelines, and inference
pipelines) read and write features/labels from/to the feature store, and prediction logs are
typically also stored there to support feature/model monitoring and debugging. Different

www.hopsworks.ai/mlops-dictionary - 11

http://www.hopsworks.ai/mlops-dictionary

Python

data transformations (model-independent, model-dependent, and on-demand) are
performed in the different ML pipelines, see the Taxonomy of Data Transformations for
more details.

Incremental Datasets
Feature pipelines keep producing feature data as long as your ML system is running.
Without a feature store, it is non-trivial to manage the mutable datasets updated by
feature pipelines - as the datasets are stored in the different offline/online/vector-db
stores. Each store has its own drivers, authentication and authorization support, and the
synchronization of updates across all stores is challenging.

Feature stores make the management of mutable datasets of features, called feature
groups, easy by providing CRUD (create/read/update/delete) APIs. The following code
snippet shows how to append, update & delete feature data in a feature group using a
Pandas DataFrame in Hopsworks. The updates are transparently synchronized across
all of the underlying stores - the offline/online/vector-db stores.

df = # read from data source, then perform feature
engineering
fg =
fs.get_or_create_feature_group(name="query_terms_yearly",

version=1,
description="Count of search

term by year",
primary_key=['year',

'search_term'],
partition_key=['year'],
online_enabled=True
)

fg.insert(df) # insert or update
fg.commit_delete_record(df) # delete

We can also update the same feature group using a stream processing client (streaming
feature pipeline). The following code snippet uses PySpark streaming to update a
feature group in Hopsworks. It computes the average amount of money spent on a credit
card, for all transactions on the credit card, every 10 minutes. It reads its input data as
events from a Kafka cluster.

www.hopsworks.ai/mlops-dictionary - 12

http://www.hopsworks.ai/mlops-dictionary

Python

Python

df_read =
spark.readStream.format("kafka")...option("subscribe",
KAFKA_TOPIC_NAME).load()

Deserialize data from Kafka and create streaming query
df_deser = df_read.selectExpr(....).select(...)

10 minute window
windowed10mSignalDF = df_deser \

.selectExpr(...)\

.withWatermark(...) \

.groupBy(window("datetime", "10 minutes"),
"cc_num").agg(avg("amount")) \

.select(...)

card_transactions_10m_agg
=fs.get_feature_group("card_transactions_10m_agg",
version=1)
query_10m =
card_transactions_10m_agg.insert_stream(window10mSignalDF)

Some feature stores also support defining columns as embeddings that are indexed for
similarity search. The following code snippet writes a DataFrame to a feature group in
Hopsworks, and indexes the “embedding_body” column in the vector database. You
need to create the vector embedding using a model, add it as a column to the
DataFrame, and then write the DataFrame to Hopsworks.

from hsfs import embedding
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')

df = # read from data source, then perform feature
engineering

www.hopsworks.ai/mlops-dictionary - 13

http://www.hopsworks.ai/mlops-dictionary

embeddings_body = model.encode(df["Article"])
df["embedding_body"] = pd.Series(embeddings_body.tolist())

emb = embedding.EmbeddingIndex()
emb.add_embedding("embedding_body",
len(df["embedding_body"][0]))

news_fg = fs.get_or_create_feature_group(
name="news_fg",
embedding_index=emb,
primary_key=["id"],
version=1,
online_enabled=True

)
news_fg.insert(df)

Backfill feature data and Training Data
Backfilling is the process of recomputing datasets from raw, historical data. When you
backfill feature data, backfilling involves running a feature pipeline with historical data to
populate the feature store. This requires users to provide a start_time and an end_time
for the range of data that is to be backfilled, and the data source needs to support
timestamps, e.g., Type 2 slowly changing dimensions in a data warehouse table.

The same feature pipeline used to backfill features should also process “live” data. You
just point the feature pipeline at the data source and the range of data to backfill (e.g.,
backfill the daily partitions with all users for the last 180 days). Both batch and streaming
feature pipelines should be able to backfill features. Backfilling features is important
because you may have existing historical data that can be leveraged to create training
data for a model. If you couldn’t backfill features, you could start logging features in your
production system and wait until sufficient data has been collected before you start
training your model.

Point-in-Time Correct Training Data
If you want to create training data from time-series feature data without any future data
leakage, you will need to perform a temporal join, sometimes called a point-in-time
correct join.

For example, in the figure below, we can see that for the (red) label value, the correct
feature values for Feature A and Feature B are 4 and 6, respectively. Data leakage
would occur if we included feature values that are either the pink (future data leakage) or

www.hopsworks.ai/mlops-dictionary - 14

https://www.hopsworks.ai/dictionary/backfill-training-data
https://www.hopsworks.ai/dictionary/point-in-time-correct-joins
https://www.hopsworks.ai/dictionary/point-in-time-correct-joins
http://www.hopsworks.ai/mlops-dictionary

Python

orange values (stale feature data). If you do not create point-in-time correct training data,
your model may perform poorly and it will be very difficult to discover the root cause of
the poor performance.

If your offline store supports AsOf Joins, feature retrieval involves joining Feature A and
Feature B from their respective tables AsOf the timestamp value for each row in the
Label table. The SQL query to create training data is an “AS OF LEFT JOIN”, as this
query enforces the invariant that for every row in your Label table, there should be a row
in your training dataset, and if there are missing feature values for a join, we should
include NULL values (we can later impute missing values in model-dependent
transformations). If your offline store does not support AsOf Joins, you can write
alternative windowing code using state tables.

As both AsOf Left joins and window tables result in complex SQL queries, many feature
stores provide domain-specific language (DSL) support for executing the temporal query.
The following code snippet, in Hopsworks, creates point-in-time-consistent training data
by first creating a feature view. The code starts by (1) selecting the columns to use as
features and label(s) to use for the model, then (2) creates a feature view with the
selected columns, defining the label column(s), and (3) uses the feature view object to
create a point-in-time correct snapshot of training data.

fg_loans = fs.get_feature_group(name="loans", version=1)
fg_applicants = fs.get_feature_group(name="applicants",
version=1)
select= fg_loans.select_except(["issue_d", "id"]).join(\

fg_applicants.select_except(["earliest_cr_line",
"id"]))

www.hopsworks.ai/mlops-dictionary - 15

https://www.hopsworks.ai/dictionary/offline-store
https://duckdb.org/2023/09/15/asof-joins-fuzzy-temporal-lookups.html#windowing-alternative
https://duckdb.org/2023/09/15/asof-joins-fuzzy-temporal-lookups.html#windowing-alternative
https://www.hopsworks.ai/dictionary/feature-view
http://www.hopsworks.ai/mlops-dictionary

Python

fv = fs.create_feature_view(name="loans_approvals",
version=1,
description="Loan applicant data",
labels=["loan_status"],
query=select
)

X_train, X_test, y_train, y_test =
fv.train_test_split(test_size=0.2)
#....
model.fit(X_train, y_train)

The following code snippet, in Hopsworks, uses the feature view we just defined to
create point-in-time consistent batch inference data. The model makes predictions using
the DataFrame df containing the batch inference data.

fv = fs.get_feature_view(name="loans_approvals",
version=fv_version)
df = fv.get_batch_data(start_time=”2023-12-23 00:00”,
end_time=NOW)

predictions_df = model.predict(df)

History and Context for Online Models

www.hopsworks.ai/mlops-dictionary - 16

http://www.hopsworks.ai/mlops-dictionary

Online models are often hosted in model-serving infrastructure or stateless (AI-enabled)
applications. In many user-facing applications, the actions taken by users are
“information poor”, but we would still like to use a trained model to make an intelligent
decision. For example, in Tiktok, a user click contains a limited amount of information -
you could not build the world’s best real-time recommendation system using just a single
user click as an input feature.

The solution is to use the user’s ID to retrieve precomputed features from the online
store containing the user's personal history as well as context features (such as what
videos or searches are trending). The precomputed features returned enrich any
features that can be computed from the user input to build a rich feature vector that can
be used to train complex ML models. For example, in Tiktok, you can retrieve
precomputed features about the 10 most recent videos you looked at - their category,
how long you engaged for, what’s trending, what your friends are looking at, and so on.
In many examples of online models, the entity is a simple user or product or booking.
However, often you will need more complex data models, and it is beneficial if your
online store supports multi-part primary keys (see Uber talk).

Feature Reuse
A common problem faced by organizations when they build their first ML models is that
there is a lot of bespoke tooling, extracting data from existing backend systems so that it
can be used to train a ML model. Then, when it comes to productionizing the ML model,
more data pipelines are needed to continually extract new data and compute features
so that the model can make continual predictions on the new feature data.

However, after the first set of pipelines have been written for the first model,
organizations soon notice that one or more features used in an earlier model are needed
in a new model. Meta reported that in their feature store “most features are used by
many models”, and that the most popular 100 features are reused in over 100 different
models. However, for expediency, developers typically rewrite the data pipelines for the
new model. Now you have different models re-computing the same feature(s) with
different pipelines. This leads to waste, and a less maintainable (non-DRY) code base.

www.hopsworks.ai/mlops-dictionary - 17

https://youtu.be/3Edcx1etACY?si=5oivkUJ237mONksG&t=558
https://www.hopsworks.ai/dictionary/data-pipelines
https://arxiv.org/pdf/2110.07554.pdf
http://www.hopsworks.ai/mlops-dictionary

The benefits of feature reuse with a feature store include higher quality features through
increased usage and scrutiny, reduced storage costs - and less feature pipelines. In fact,
the feature store decouples the number of models you run in production from the number
of feature pipelines you have to maintain. Without a feature store, you typically write at
least one feature pipeline per model. With a (large enough) feature store, you may not
need to write any feature pipeline for your model if the features you need are already
available there.

Multiple Feature Computation Models

The feature pipeline typically does not need GPUs, may be a batch program or
streaming program, and may process small amounts of data with Pandas or Polars or
large amounts of data with a framework such as Spark or DBT/SQL. Streaming feature
pipelines can be implemented in Python (Bytewax) or more commonly in distributed
frameworks such as PySpark, with its micro-batch computation model, or Flink/Beam
with their lower latency per-event computation model.

www.hopsworks.ai/mlops-dictionary - 18

https://www.hopsworks.ai/dictionary/streaming-feature-pipeline
https://www.hopsworks.ai/dictionary/streaming-feature-pipeline
http://www.hopsworks.ai/mlops-dictionary

Python

The training pipeline is typically a Python program, as most ML frameworks are written in
Python. It reads features and labels as input, trains a model and outputs the trained
model (typically to a model registry).

An inference pipeline then downloads a trained model and reads features as input (some
may be computed from the user’s request, but most will be read as precomputed
features from the feature store). Finally, it uses the features as input to the model to
make predictions that are either returned to the client who requested them or stored in
some data store (often called an inference store) for later retrieval.

Validate Feature Data and Monitor for Drift
Garbage-in, garbage out is a well known adage in the data world. Feature stores can
provide support for validating feature data in feature pipelines. The following code
snippet uses the Great Expectations library to define a data validation rule that is applied
when feature data is written to a feature group in Hopsworks.

df = # read from data source, then perform feature
engineering

define data validation rules in Great Expectations
ge_suite = ge.core.ExpectationSuite(

expectation_suite_name="expectation_suite_101"
)

ge_suite.add_expectation(
ExpectationConfiguration(

expectation_type="expect_column_values_to_not_be_null",
kwargs={"column":"'search_term'"}

)
)

fg =
fs.get_or_create_feature_group(name="query_terms_yearly",

version=1,
description="Count of search

term by year",

www.hopsworks.ai/mlops-dictionary - 19

http://www.hopsworks.ai/mlops-dictionary

primary_key=['year',
'search_term'],

partition_key=['year'],
online_enabled=True,
expectation_suite=ge_suite
)

fg.insert(df) # data validation rules executed in client
before insertion

The data validation results can then be viewed in the feature store, as shown below. In
Hopsworks, you can trigger alerts if data validation fails, and you can decide whether to
allow the insertion or fail the insertion of data, if data validation fails.

Feature monitoring is another useful capability provided by many feature stores.
Whether you build a batch ML system or an online ML system, you should be able to
monitor inference data for the system’s model to see if it is statistically significantly
different from the model’s training data (data drift). If it is, you should alert users and
ideally kick-off the retraining of the model using more recent training data.

Here is an example code snippet from Hopsworks for defining a feature monitoring rule
for the feature “amount” in the model’s prediction log (available for both batch and online
ML systems). A job is run once per day to compare inference data for the last week for
the amount feature, and if its mean value deviates more than 50% from the mean
observed in the model’s training data, data drift is flagged and alerts are triggered.

www.hopsworks.ai/mlops-dictionary - 20

https://www.hopsworks.ai/dictionary/data-validation-for-features
https://www.hopsworks.ai/dictionary/feature-monitoring
http://www.hopsworks.ai/mlops-dictionary

Python

Compute statistics on a prediction log as a detection
window
fg_mon = pred_log.create_feature_monitoring("name",

feature_name = "amount", job_frequency = "DAILY")
.with_detection_window(row_percentage=0.8, time_offset

="1w")

Compare feature statistics with a reference window - e.g.,
training data
fg_mon.with_reference_training_dataset(version=1).compare_on
(

metric = "mean", threshold=50)

Taxonomy of Data Transformations
When data scientists and data engineers talk about data transformations, they are not
talking about the same thing. This can cause problems in communication, but also in the
bigger problem of feature reuse in feature stores. There are 3 different types of data
transformations, and they belong in different ML pipelines.

Data transformations, as understood by data engineers, is a catch-all term that covers
data cleansing, aggregations, and any changes to your data to make it consumable by
BI or ML. These data transformations are called model-independent transformations
as they produce features that are reusable by many models.

In data science, data transformations are a more specific term that refers to encoding a
variable (categorical or numerical) into a numerical format, scaling a numerical variable,
or imputing a value for a variable, with the goal of improving the performance of your ML
model training. These data transformations are called model-dependent
transformations and they are specific to one model.

www.hopsworks.ai/mlops-dictionary - 21

https://www.hopsworks.ai/dictionary/data-transformation
https://www.hopsworks.ai/dictionary/model-independent-transformations
https://www.hopsworks.ai/dictionary/model-dependent-transformations
https://www.hopsworks.ai/dictionary/model-dependent-transformations
http://www.hopsworks.ai/mlops-dictionary

Finally, there are data transformations that can only be performed at runtime for online
models as they require parameters only available in the prediction request. These data
transformations are called on-demand transformations, but they may also be needed
in feature pipelines if you want to backfill feature data from historical data.

The feature store architecture diagram from earlier shows that model-independent
transformations are only performed in feature pipelines (whether batch or streaming
pipelines). However, model-dependent transformations are performed in both training
and inference pipelines, and on-demand transformations can be applied in both feature
and online inference pipelines. You need to ensure that equivalent transformations are
performed in both pipelines - if there is skew between the transformations, you will have
model performance bugs that will be very hard to identify and debug. Feature stores help
prevent this problem of online-offline skew. For example, model-dependent
transformations can be performed in scikit-learn pipelines or in feature views in
Hopsworks, ensuring consistent transformations in both training and inference pipelines.
Similarly, on-demand transformations are version-controlled Python or Pandas
user-defined functions (UDFs) in Hopsworks that are applied in both feature and online
inference pipelines.

Query Engine for Point-in-Time Consistent Feature Data for Training
Feature stores can use existing columnar data stores and data processing engines, such
as Spark, to create point-in-time correct training data. However, as of December 2023,
Spark, BigQuery, Snowflake, and Redshift do not support the ASOF LEFT JOIN query
that is used to create training data from feature groups. Instead, they have to implement
stateful windowed approaches.

The other main performance bottleneck with many current data warehouses is that they
provide query interfaces to Python with either a JDBC or ODBC API. These are
row-oriented protocols, and data from the offline store needs to be pivoted from
columnar format to row-oriented, and then back to column-oriented in Pandas. Arrow is
now the backing data format for Pandas 2.+.

In open-source, reproducible benchmarks by KTH, Karolinska, and Hopsworks, they
showed the throughput improvements over a specialist DuckDB/ArrowFlight feature

www.hopsworks.ai/mlops-dictionary - 22

https://www.hopsworks.ai/dictionary/on-demand-transformation
https://duckdb.org/2023/09/15/asof-joins-fuzzy-temporal-lookups.html#windowing-alternative
https://duckdb.org/2023/09/15/asof-joins-fuzzy-temporal-lookups.html#windowing-alternative
https://github.com/featurestoreorg/featurestore-benchmarks/tree/main/fs-offline-benchmark
http://www.hopsworks.ai/mlops-dictionary

Python

query engine that returns Pandas DataFrames to Python clients in training and batch
inference pipelines. We can see from the table below that throughput improvements of
10-45X JDBC/ODBC-based query engines can be achieved.

Query Engine for Low Latency Feature Data for Online Inference
The online feature store is typically built on existing low latency row-oriented data stores.
These could be key-value stores such as Redis or Dynamo or a key-value store with a
SQL API, such as RonDB for Hopsworks.

The process of building the feature vector for an online model also involves more than
just retrieving precomputed features from the online feature store using an entity ID.
Some features may be passed as request parameters directly and some features may
be computed on-demand - using either request parameters or data from some 3rd party
API, only available at runtime. These on-demand transformations may even need
historical feature values, inference helper columns, to be computed.

In the code snippet below, we can see how an online inference pipeline takes request
parameters in the predict method, computes an on-demand feature, retrieves
precomputed features using the request supplied id, and builds the final feature vector
used to make the prediction with the model.

def loc_diff(event_ts, cur_loc) :
return grid_loc(event_ts, cur_loc)

def predict(id, event_ts, cur_loc, amount) :
f1 = loc_diff(event_ts, cur_loc)
df = feature_view.get_feature_vector(

entry = {"id":id},
passed_features ={"f1" : f1, "amount" : amount}

)
return model.predict(df)

www.hopsworks.ai/mlops-dictionary - 23

https://www.rondb.com/
https://www.hopsworks.ai/dictionary/online-inference-pipeline
http://www.hopsworks.ai/mlops-dictionary

In the figure below, we can see important system properties for online feature stores. If
you are building your online AI application on top of an online feature store, it should
have LATS properties (low Latency, high Availability, high Throughput, and scalable
Storage), and it should also support fresh features (through streaming feature
pipelines).

Some other important technical and performance considerations here for the online store
are:

● Projection pushdown can massively reduce network traffic and latency. When
you have popular features in feature groups with lots of columns, your model
may only require a few features. Projection pushdown only returns the features
you need. Without projection pushdown (e.g., most key-value stores), the entire
row is returned and the filtering is performed in the client. For rows of 10s of KB,
this could mean 100s of times more data is transferred than needed, negatively
impacting latency and throughput (and potentially also cost).

● Your feature store should support a normalized data model, not just a star
schema. For example, if your user provides a booking reference number that is
used as the entity ID, can your online store also return features for the user and
products referenced in the booking, or does either the user or application have to
provide the user ID and product ID? For high performance, your online store
should support pushdown LEFT JOINs to reduce the number of database round
trips for building features from multiple feature groups.

www.hopsworks.ai/mlops-dictionary - 24

https://www.hopsworks.ai/post/ai-ml-needs-a-key-value-store-and-redis-is-not-up-to-it
https://www.hopsworks.ai/post/ai-ml-needs-a-key-value-store-and-redis-is-not-up-to-it
https://www.hopsworks.ai/dictionary/feature-freshness
https://www.hopsworks.ai/dictionary/dimensional-modeling-and-feature-stores
https://www.hopsworks.ai/dictionary/dimensional-modeling-and-feature-stores
http://www.hopsworks.ai/mlops-dictionary

Python

Query Engine to find similar Feature Data using Embeddings
Real-time ML systems often use similarity search as a core functionality. For example,
personalized recommendation engines typically use similarity search to generate
candidates for recommendation, and then use a feature store to retrieve features for the
candidates, before a ranking model personalizes the candidates for the user.

The example code snippet below is from Hopsworks, and shows how you can search for
similar rows in a feature group with the text “Happy news for today” in the
embedding_body column.

news_desc = "Happy news for today"
df = news_fg.find_neighbors(model.encode(news_desc), k=3)
df now contains rows with 'news_desc' values that are most
similar to 'news_desc'

Do I need a feature store?
Feature stores have historically been part of big data ML platforms, such as Uber’s
Michelangelo, that manage the entire ML workflow, from specifying feature logic, to
creating and operating feature pipelines, training pipelines, and inference pipelines.

More recent open-source feature stores provide open APIs enabling easy integration
with existing ML pipelines written in Python, Spark, Flink, or SQL. Serverless feature
stores further reduce the barriers of adoption for smaller teams. The key features
needed by most teams include APIs for consistent reading/writing of point-in-time correct
feature data, monitoring of features, feature discovery and reuse, and the versioning and
tracking of feature data over time. Basically, feature stores are needed for MLOps and
governance. Do you need Github to manage your source code? No, but it helps.
Similarly, do you need a feature store to manage your features for ML? No, but it helps.

What is the difference between a feature store and a vector database?
Both feature stores and vector databases are data platforms used by machine learning
systems. The feature store stores feature data and provides query APIs for efficient
reading of large volumes feature data (for model training and batch inference) and low
latency retrieval of feature vectors (for online inference). In contrast, a vector database
provides a query API to find similar vectors using approximate nearest neighbour (ANN)
search.

The indexing and data models used by feature stores and vector databases are very
different. The feature store has two data stores - an offline store, typically a data
warehouse/lakehouse, that is a columnar database with indexes to help improve query

www.hopsworks.ai/mlops-dictionary - 25

https://www.hopsworks.ai/dictionary/vector-database
http://www.hopsworks.ai/mlops-dictionary

performance such as (file) partitioning based on a partition column, skip indexes (skip
files when reading data using file statistics), and bloom filters (which files to skip when
looking for a row). The online store is row-oriented database with indexes to help
improve query performance such as a hash index to lookup a row, a tree index (such as
a b-tree) for efficient range queries and row lookups, and a log-structured merge-tree (for
improved write performance). In contrast, the vector database stores its data in a vector
index that supports ANN search, such as FAISS (Facebook AI Similarity Search) or
ScaNN by Google.

Is there an integrated feature store and vector database?
Hopsworks is a feature store with an integrated vector database. You store tables of
feature data in feature groups, and you can index a column that contains embeddings in
a built-in vector database. This means you can search for rows of similar features using
embeddings and ANN search. Hopsworks also supports filtering, so you can search for
similar rows, but provide conditions on what type of data to return (e.g., only users
whose age>18).

● Feature Type
What are feature types in machine learning?
A feature type defines the set of valid encodings (model-dependent transformations) that
can be performed on a feature value. The standard feature types are categorical (ordinal
or nominal), numerical (interval or ratio), and array types (lists or embeddings).

The above figure is a taxonomy for data types for features; you can read more about it
in the article feature types for machine learning.

Why is it important to understand feature types?
Feature types determine how feature values can be encoded and represented in a
machine learning model. Different types of features require different types of encoding
and processing, and using the wrong encoding for a feature type can lead to inaccurate
or suboptimal model performance.

www.hopsworks.ai/mlops-dictionary - 26

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://blog.research.google/2020/07/announcing-scann-efficient-vector.html
https://blog.research.google/2020/07/announcing-scann-efficient-vector.html
https://www.hopsworks.ai/post/feature-types-for-machine-learning
https://www.hopsworks.ai/post/feature-types-for-machine-learning
http://www.hopsworks.ai/mlops-dictionary

● Flash Attention
What is Flash Attention?
Flash Attention is a method to improve the efficiency of transformer models, in particular
large language models (LLMs), helping reduce both model training time and inference
latency. Inference latency is, in particular, a challenge for LLMs, and flash attention has
become a key technique that enables your LLM applications to respond faster.

Transformer models are built on the attention mechanism, which helps the model focus
on relevant parts of the text input when making predictions. However, as
transformer-based models become larger and larger to handle more complex tasks or
larger datasets, a major limitation arises from the self-attention mechanism. This
mechanism becomes increasingly slow and memory intensive as the model size grows.
This is because it keeps loading and unloading data from memory. Flash Attention is
introduced as a solution to mitigate this memory bottleneck problem associated with
attention mechanisms in transformer models.

Why is Flash Attention important?
By improving the efficiency of attention operations, Flash Attention allows for faster
training and inference of transformer-based models. Rather than loading queries, keys,
and values, or intermediate computation results multiple times for each computation
iteration, Flash Attention loads all the data (queries, keys, and values) just once. It then
computes the attention score (conducts a series of operations) on this loaded data
before writing back the final results. Additionally, it divides the loaded data into smaller
blocks, aiding parallel processing.

By strategically minimizing the back-and-forth data transfers between memory types,
Flash Attention optimizes resource utilization. Key strategies include "kernel fusion,"

www.hopsworks.ai/mlops-dictionary - 27

http://www.hopsworks.ai/dictionary/model-training
http://www.hopsworks.ai/mlops-dictionary

which combines multiple computation steps into a single operation, reducing the need
for repetitive data transfers thus reducing overhead. This streamlined approach not only
enhances computational efficiency but also simplifies the implementation process,
making it accessible to a broader audience of practitioners. Another key strategy is
"tiling", which involves partitioning the input data into smaller blocks to facilitate parallel
processing. This strategy optimizes memory usage, enabling scalable solutions for
models with larger input sizes.

Optimizing Data Movement with Flash Attention
High Bandwidth Memory (HBM) offers large memory capacity but suffers from slower
processing speeds. On the other hand, SRAM (Static Random-Access Memory) is a
type of memory that provides fast access to data but is typically limited in capacity
compared to HBM. On-chip SRAM, as the name suggests, is located directly on the chip,
enabling even faster access times compared to off-chip memory.

In standard attention mechanisms, such as those used in standard transformer models,
HBM is used to store, read, and write the keys, queries, and values used in the attention
computation. However, the operations involved in attention calculations often lead to
frequent data transfers between HBM and on-chip SRAM. For example, during
computation, keys, queries, and values are loaded from HBM into on-chip SRAM for
processing, and intermediate results and final outputs are written back to HBM after
each step of the attention mechanism. The frequent movement of data between HBM
and SRAM results in high overhead due to the time spent on data transfer and
processing.

Instead, Flash Attention optimizes the movement of data between HBM and on-chip
SRAM by reducing redundant reads and writes. Instead of performing these operations
for each individual attention step, Flash Attention loads the keys, queries, and values
only once, combines or "fuses" the operations of the attention mechanism, and then
writes the results back to memory. This reduces the overall computational overhead and
improves efficiency.

In summary, while standard attention mechanisms rely heavily on data movement
between HBM and SRAM, Flash Attention introduces optimizations such as optimized
data movement, kernel fusion, and efficient memory usage to minimize overhead and
improve efficiency in memory access and computation. The impact of Flash Attention
offers tangible benefits in terms of both training speed and inference latency.

Flash Attention in Fine-Tuning Frameworks
Axolotl supports flash-attention for open-source models like Llama-2 and Mistral. You
can enable flash-attention by installing its profile along with axolotl:

pip install axolotl[flash-attn]

www.hopsworks.ai/mlops-dictionary - 28

http://www.hopsworks.ai/mlops-dictionary

Axolotl can be used for fine-tuning models on Hopsworks by simply installing it as a
Python dependency in your project. Your fine-tuning training data can be loaded from
Hopsworks by Axolotl using the built-in FUSE support that makes your training data,
stored on HopsFS-S3, available as local files to Axolotl.

Model Serving Servers that support Flash Attention
Several model serving servers now support flash attention, including vLLM, and HF’s
one. It is anticipated that many more model serving servers will support flash attention to
supercharge LLMs.

For an Enterprise model serving solution with flash attention, Hopsworks comes with
KServe support, which includes support for both vLLM and HF model serving servers.
This gives you the benefits of scale, low latency, logging, monitoring, and access control
for serving LLMs at high performance.

● Function Calling with LLMs
What is Function Calling with LLMs?
In the realm of large language models (LLMs), Function Calling refers to the ability of a
LLM to impute, from the user prompt, the correct function to execute from a set of
available functions and the correct parameters to pass to that function. Instead of
generating standard text responses, a LLM for function calling is typically fine-tuned to
return structured data responses, typically JSON objects. The returned structured data
can be used to execute predefined functions, such as retrieving data from a data
warehouse or feature store, retrieving real-time data, or calling 3rd party APIs. Function
Calling has emerged as a significant technique, particularly in models like OpenAI's GPT
models, in how these models interact with users and the external world, offering a
structured approach to handling complex queries and tasks. In particular, function calling
is a promising technique for opening up enterprise data directly to LLMs without the
need for a vector database.

Function Calling significantly expands the capabilities of LLMs by bridging the gap
between natural language understanding and practical tasks. With Function Calling,
these models can seamlessly integrate with external systems, perform complex
operations, and provide more accurate and contextually relevant responses.

Using Function Calling in AI Systems
You should look into function calling if you are designing an AI system that allows users
to not only get text-based responses, but also executes tasks on your behalf. For
example, let’s consider the task of sending an email. Instead of simply generating
text-based responses, the LLMs can use Function Calling to generate a structured
response (such as a JSON object) that is used to execute the email-sending task

www.hopsworks.ai/mlops-dictionary - 29

http://www.hopsworks.ai/dictionary/fine-tuning-llms
https://www.hopsworks.ai/dictionary/model-serving
https://www.hopsworks.ai/dictionary/kserve
https://www.hopsworks.ai/dictionary/kserve
https://www.hopsworks.ai/dictionary/vllm
http://www.hopsworks.ai/mlops-dictionary

● The user initiates a conversation with the virtual assistant, expressing their intent
to send an email.

● The virtual assistant will first use the LLM (e.g., a LLM fine-tuned for Function
Calling), to process the user's request. Based on the context of the conversation,
the model detects the need to call a specific function for sending an email.

● The model then generates a function call response, e.g., a JSON object,
specifying the details of the email as the arguments of the function call, such as
the recipient's email address (‘to’) and the content of the email (‘body’). This
request is then passed to the pre-defined function in the system that is
responsible for sending emails.

send_email(to: "colleague@example.com", body: "Hi [Colleague's Name], I hope
this email finds you well. Can we reschedule our meeting tomorrow to next
Monday? Best regards, [Your Name]")

● In the backend, the system receives the function call request from the LLM.
Using the provided arguments, the system executes the necessary steps to send
the email(s).

● Once the email has been sent, the system prepares a response for the LLM.
This response may include confirmation of the email being sent or any relevant
details related to the task. The LLM can then generate natural language text to
the users about this request.

Why is Function Calling Useful?
By incorporating Function Calling into LLM-based AI systems, the interactivity and utility
can be largely enhanced, enabling the AI system to perform real-world tasks on behalf of
users. Furthermore, Function Calling streamlines the execution of tasks, eliminating the
need for users to switch between multiple applications or interfaces. On the other hand,
Function Calling provides flexibility to users to define custom functions tailored to specific
use cases, allowing for offering personalized experience.

Function Calling in ML Frameworks
OpenAI supports function calling and has been fine-tuned for function calling. The
open-source Instructor library supports function calling with the help of Pydantic
objects. OpenHermes is a fine-tuned LLM that supports function calling. Together with
Instructor, they can be used by the DSPy library to build compound AI systems that
optimize the chains of commands that make up the system. Both Instructor and DSPy
can be installed as Python libraries in Hopsworks. OpenHermes can be downloaded for
free from Hugging Face. Hopsworks additionally supports RAG through its feature store
with approximate nearest neighbor indexing. You can write DataFrames to Hopsworks
that are both available for querying with either function calling or similarity search.

www.hopsworks.ai/mlops-dictionary - 30

https://platform.openai.com/docs/guides/function-calling
https://github.com/jxnl/instructor
https://github.com/jxnl/instructor
https://docs.pydantic.dev/latest/
https://github.com/abacaj/openhermes-function-calling/blob/main/openhermes-functions.ipynb
https://github.com/stanfordnlp/dspy
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://www.hopsworks.ai/dictionary/retrieval-augmented-generation-llm
http://www.hopsworks.ai/mlops-dictionary

In summary, Function Calling represents a significant new capability for LLMs to interact
with Enterprise Data and Enterprise Systems, empowering developers to create more
interactive and functional applications. By seamlessly integrating with external
applications, systems, and APIs, LLMs become even more versatile, capable of
performing a diverse range of tasks with ease.

G
● Gradient Accumulation

What is Gradient Accumulation
Imagine you have to fine-tune a LLM, but you only have a small number of GPUs,
making your training memory-constrained. Or imagine you want to train an image
classifier but you don't have enough GPU memory. In these cases, Gradient
Accumulation can help. Gradient Accumulation is a technique used when training neural
networks to support larger batch sizes given limited available GPU memory.

In traditional (mini-batch) stochastic gradient descent (SGD), training is performed in
batches, primarily to improve throughput (reduce training time). During the forward pass,
a batch is fed into the model, and gradients with respect to the loss function are
computed. The model's parameters are then updated after computing the gradients on a
single batch of training data.

However, in Gradient Accumulation, instead of updating the model parameters after
processing each individual batch of training data, the gradients are accumulated over
multiple batches before updating. This means that rather than immediately incorporating
the information from a single batch into the model's parameters, the gradients are
summed up over multiple batches. Once a certain number of batches have been
processed (typically denoted as N batches), the accumulated gradients are used to
update the model parameters. This update can be performed using any optimization
algorithm like SGD or Adam. This approach reduces the amount of memory needed for
training and can help stabilize the training process, particularly when working with the
batch size is too large to fit into the memory.

What are the Advantages of Gradient Accumulation?
The main advantages of gradient accumulation are:

● Memory Efficiency: It allows training with larger effective batch sizes without
requiring additional memory. This can be crucial when working with limited
computational resources or when dealing with large models.

● Stable Training: Accumulating gradients over multiple batches can provide a
more stable update direction, especially when dealing with noisy gradients.
Accumulating gradients over multiple batches can reduce the impact of noisy

www.hopsworks.ai/mlops-dictionary - 31

http://www.hopsworks.ai/dictionary/fine-tuning-llms
https://www.hopsworks.ai/dictionary/training-data
http://www.hopsworks.ai/mlops-dictionary

gradients, which may arise due to the inherent randomness in sampling mini
batches. By accumulating gradients, the batch size seen by the optimizer can be
effectively increased, which can lead to more stable updates and better
utilization of hardware resources.

● Improved Generalization: Some studies suggest that Gradient Accumulation can
lead to better generalization performance by effectively increasing the effective
batch size during training.

Implementing Gradient Accumulation
When introducing Gradient Accumulation for training machine learning models, it's
essential to understand the various considerations that come into play to ensure its
effective use.

● Learning Rate Adjustment: Adjusting the learning rate is often necessary when
using Gradient Accumulation. Since the effective batch size increases with
accumulation, the learning rate might need to be scaled accordingly to ensure
stable training. A common approach is to divide the learning rate by the
accumulation factor, which is the number of batches accumulated before
updating the parameters. This adjustment helps maintain a consistent learning
rate relative to the effective batch size.

● Convergence Behavior: Gradient Accumulation can impact the convergence
behavior of the training process. Depending on factors such as the accumulation
factor and the learning rate adjustment strategy, the training dynamics may
change. It's essential to monitor the training process and experiment with
different accumulation strategies to ensure convergence to an optimal solution.
In some cases, excessive accumulation might lead to slower convergence or
even hinder convergence altogether, so finding the right balance is crucial.

● Computational Overhead: While Gradient Accumulation can be memory-efficient,
it may introduce additional computational overhead. Accumulating gradients over
multiple batches requires storing the gradients for each parameter until they are
updated, which can increase memory usage and computation time. It's essential
to consider the trade-offs between memory efficiency and computational
overhead when deciding on the accumulation strategy, especially when working
with limited resources.

Gradient Accumulation in ML Frameworks
Axolotl supports gradient accumulation for open-source models like Llama-2 and Mistral,
by adding to the Axolotl yaml config file:

gradient_accumulation_steps: N

www.hopsworks.ai/mlops-dictionary - 32

https://www.hopsworks.ai/dictionary/ml
http://www.hopsworks.ai/mlops-dictionary

Axolotl can be used for fine-tuning models on Hopsworks by simply installing it as a
Python dependency in your project. Your fine-tuning training data can be loaded from
Hopsworks by Axolotl using the built-in FUSE support that makes your training data,
stored on HopsFS-S3, available as local files to Axolotl.

In summary, Gradient Accumulation is a technique used to improve memory efficiency
and stabilize training in neural networks by accumulating gradients over multiple batches
before updating the model parameters. Gradient Accumulation offers advantages in
terms of memory usage, stability, and potentially improved generalization performance,
but it requires careful consideration of implementation details and tuning for optimal
results.

I
● In Context Learning (ICL)

What is In Context Learning (ICL)?
In-context learning (ICL) is a specific method of prompt engineering where
demonstrations of the task are provided to the model as part of the prompt (in natural
language). With ICL, you can use off-the-shelf large language models (LLMs) to solve
novel tasks without the need for fine-tuning. ICL can also be combined with fine-tuning
for more powerful LLMs.

The main types of machine learning (supervised ML, unsupervised ML,
semi-supervised ML, and reinforcement learning) can only learn with data they are
trained on. That is, they can only solve tasks that they are trained to solve. LLMs that are
large enough have shown a new type of machine learning - in-context learning - the
ability to learn to solve new tasks by providing “training” examples in the prompt. In
contrast to the aforementioned types of ML, the newly learnt skill is forgotten directly
after the LLM sends its response - model weights are not updated.

In-context learning (ICL) learns a new task from a small set of examples presented
within the context (the prompt) at inference time. LLMs trained on sufficient data exhibit
ICL, even though they are trained only with the objective of next token prediction. Much
of the interest in LLMs is due to the prompting with examples as it enables applications
on novel tasks without the need for fine-tuning the LLM.

How to Engineer Prompts for In-Context Learning
Imagine a recipe generation service where you enter what ingredients you have
available, and ask the service to generate a recipe for you. One way to implement this
service would be with prompts prefixed with example recipes before your text with your
available ingredients is finally added to the prompt. For this, you may have thousands of
recipes indexed in a VectorDB. When the query arrives, you use the ingredients to look

www.hopsworks.ai/mlops-dictionary - 33

https://www.hopsworks.ai/dictionary/types-of-machine-learning
https://www.hopsworks.ai/dictionary/vector-database
http://www.hopsworks.ai/mlops-dictionary

Unset

Unset

up the most relevant recipes in the VectorDB, then paste them in at the start of the
prompt, and then write the list of available ingredients, and finally, ask your LLM to
generate a prompt. This is an example of retrieval-augmented generation for LLMs.

The above service follows one piece of advice on prompt engineering - add the most
relevant context at the beginning or the end of a prompt to improve the performance of
LLMs. Researchers have shown that adding relevant context (i.e., the question of what
recipe to generate) in the middle of the prompt leads to worse performance.

How many example recipes can you add to your prompt? That depends on the context
window size for your model. GPT-4 can include ~50 pages of input text (32KB of data),
and inference time slows down with larger input prompts.

Zero-Shot vs One Shot vs Few Shot Learning
Reynolds and McDonell describe fews-shot prompts as where a small number of
examples of solved tasks are provided as part of the input to the trained LLM. The goal
is to make predictions for new classes based on just a few examples.

Zero-Shot Inference

The following example uses zero prompts as context.

Prompt: Who won the 2014 World Cup?

GPT-4 Response: Germany won the 2014 FIFA World Cup.
The tournament was held in Brazil, and Germany defeated
Argentina 1-0 in the final, with the match-winning goal
scored by Mario Götze during extra time

The zero-shot completion includes additional information about the match that I didn't
really want.
Can we use in-context learning to teach the model the format of the response I am
looking for?

One-Shot Learning/Inference
The following example adds an instruction and one-shot prompt to the context:

www.hopsworks.ai/mlops-dictionary - 34

https://www.hopsworks.ai/dictionary/retrieval-augmented-llm
https://arxiv.org/abs/2307.03172
https://arxiv.org/pdf/2102.07350.pdf
http://www.hopsworks.ai/mlops-dictionary

Unset

Unset

Unset

Unset

Prompt: Answer the question using the format
shown in the context.
Who won the World Cup in 2014?
Germany won the 2014 FIFA World Cup. They defeated
Argentina in the final. It was a low scoring game.
Who won the world cup in 2018?

GPT-4 Response: France won the 2018 FIFA World Cup.
They defeated Croatia in the final. It was a higher
scoring game compared to the 2014 final.

Few-Shot Learning/Inference
The following example adds a few-shot prompt to the context. You can give more
examples to ensure that the response by your LLM is more consistent.

Prompt: Answer the question using the format
shown in the context.
Who won the World Cup in 2014?
Germany won the 2014 FIFA World Cup. They defeated
Argentina in the final. It was a low scoring game.
Who won the World Cup in 2018?
France won the 2018 FIFA World Cup. They defeated
Croatia in the final. It was a high scoring game.
Who won the world cup in 2022?

GPT-4 Response: Argentina won the 2022 FIFA World Cup.
They defeated France in the final. It was a high scoring
game.

www.hopsworks.ai/mlops-dictionary - 35

http://www.hopsworks.ai/mlops-dictionary

Model Size and Context Window Size for ICL
In-context learning benefits from larger context window sizes, as it makes it easier for
ICL with prompts. Similarly, ICL can benefit from LLMs with more parameters. For
example, in GPT-4, with a large 32K context window size, Kosinski showed that GPT-4
could solve 95% of a set of 40 classic false-belief tasks widely used to test
Theory-of-Mind (ToM) in humans. In contrast, GPT-3 has a smaller model (up to 1000
times smaller than GPT-4) with a context window size of 2K, and it could only solve 40%
of the false-belief tasks. Similarly, Levenstein et al in LLaMA 30b, a LLM with only 10s
of billions of parameters and a smaller context window size, could not show ability to
solve ToM problems.

Is In-Context Learning Real?
Yes, in this paper by Raventós et al, where they study ICL for linear regression and
each task corresponds to a different latent regression vector, as pre-training task
diversity increases beyond a threshold, transformer models outperform Bayesian
estimators on unseen tasks. The implication is that ICL is an emergent phenomenon, as
their transformer model moves beyond memorization of the pretraining tasks when there
is sufficient diversity and scale in pre-training data. With ICL, transformers can solve new
tasks not seen during pre-training.

 Why does ICL work?
Informally, Charles Fyre declares, prompting is mostly subtractive, we delete potential
words with each input. ICL is more about defining the task than about [learning] it.
However, other researchers disagree and believe the LLMs can learn in a single shot.

Dileep et al speculate that schema learning and rebinding are key mechanisms - they
believe that ICL can be explained as schema learning, and simultaneously inferring the
slot-filling and latent template from the prompt.

As Dileep explains “fast rebinding is a special case of expectation maximization, where
the updates are local to surprising tokens found during inference. Most of the content of
the latent circuit remains ‘anchored’ to prior training, while some ‘slots’ are filled on the
fly with rebinding”. In contrast, Xie et al speculate that implicit Bayesian inference is the
main mechanism at work, although Dileep et al show that this is not enough to solve the
“dax test” like novel word usage.

● Inference Pipeline
What is an inference pipeline?
An inference pipeline is a program that takes input data, optionally transforms that data,
then makes predictions on that input data using a model. Inference pipelines can be
either batch programs or online services. In general, if you need to apply a trained
machine learning model to new data, you will need some type of inference pipeline.

www.hopsworks.ai/mlops-dictionary - 36

https://arxiv.org/abs/2302.02083
https://arxiv.org/abs/2307.00175
https://arxiv.org/abs/2306.15063
https://twitter.com/full_stack_dl/status/1658497436862791681
https://arxiv.org/pdf/2307.01201.pdf
https://arxiv.org/pdf/2111.02080.pdf
http://www.hopsworks.ai/mlops-dictionary

Python

Do I need an inference pipeline?
If you are building a machine learning model that will be used in production to make
predictions on new data, then you will likely need an inference pipeline to take that new
input data and apply the trained model to make predictions.

How do I implement an inference pipeline?
An inference pipeline typically involves first an initialization step that includes
downloading the trained model from a model registry, loading any necessary
dependencies (such as importing libraries), and establishing a connection to a feature
store. The inference step involves setting up the input data pipeline, making predictions
on the input data using the model, and optionally post-processing the predictions. If a
feature store is used, the inference pipeline can read precomputed features directly
from the feature store, perform any necessary on-demand feature transformations and
any feature encodings, and then pass the transformed features to the model for
prediction.

What is the difference between an online inference pipeline and an offline (batch)
inference pipeline?
Model deployments run 24x7 and serve inference requests over the network, typically
using some model serving infrastructure. The online inference pipeline is the code that
is executed before and after the trained model makes predictions as part of an online
inference request. In contrast, a batch inference pipeline is a program that is run on a
schedule to make predictions on (typically) new inference data that has arrived since the
last time the batch inference pipeline ran.

● Instruction Dataset for fine-tuning LLMs
What are Instruction Datasets for Fine-Tuning LLMs?
Instruction datasets are used to fine-tune LLMs. Fine-tuning LLMs typically uses
supervised machine learning and includes both an input string and an expected output
string. The input and output string follow a template known as an instruction dataset
format (e.g., [INST] <<SYS>>). ChatML by OpenAI and Alpaca from Stanford are
examples of Instruction Dataset Formats. The following is the instruction data format
used by Alpaca for fine-tuning the includes context information (the input field below):

Below is an instruction that describes a task, paired with an
input that provides further context.
Write a response that appropriately completes the request.

Instruction:

www.hopsworks.ai/mlops-dictionary - 37

https://www.hopsworks.ai/dictionary/model-registry
https://www.hopsworks.ai/dictionary/data-pipelines
http://www.hopsworks.ai/dictionary/precomputed-features
https://www.hopsworks.ai/dictionary/transformation
https://www.hopsworks.ai/dictionary/encoding-for-features
https://www.hopsworks.ai/dictionary/online-inference-pipeline
https://github.com/openai/openai-python/blob/main/chatml.md
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://github.com/tatsu-lab/stanford_alpaca#data-release
https://github.com/tatsu-lab/stanford_alpaca#data-release
http://www.hopsworks.ai/mlops-dictionary

{instruction}

Input:
{input}

Response:

L
● Lagged features

What are lagged features?
Lagged features are a feature engineering technique used to capture the temporal
dependencies and patterns in time series data. A lagged feature is created by taking the
value of a variable at a previous time point and including it as a feature in the model at
the current time point. This is done by shifting the time series data by a certain number
of time steps, which is referred to as the lag or time lag.

For example, if we have a time series of daily temperatures for the past 7 days, we can
create lagged features by including the temperature values at the previous day, two days
ago, three days ago, and so on. This allows the model to capture patterns in the data
that are related to the previous values of the feature.

● LLMs - Large Language Models
What are LLMs (large language models)?
LLMs stands for Large Language Models. These are machine learning models that have
been trained on massive amounts of text data, such as books, articles, and web pages,
to understand and generate human language. (This definition was generated by a LLM -
OpenAI's GPT-3 (Generative Pre-trained Transformer 3), which has 175 billion
parameters and can generate highly coherent and contextually relevant language text.)

LLMs require graphic processing units (GPUs) to be trained and also for inference
(otherwise they are very slow).

Retrieval Augmented Generation (RAG)and In-Context Learning
A LLM takes a query in natural language (such as English) as input and produces a

www.hopsworks.ai/mlops-dictionary - 38

https://openai.com/product
https://openai.com/product
http://www.hopsworks.ai/mlops-dictionary

response. The input query is called a prompt. Often, you can improve the response from
a LLM by carefully designing the prompt, in a process called prompt engineering or
prompt tuning. LLMs can work well when you give them explicit instructions about how
the output format of the response should be, or give them examples that you would like
them to learn from (RAG and in-context learning). For example, if the LLM training cut
off time was in 2021, and you provide the LLM as a prompt the wikipedia article for the
2022 football world cup, and add at the end of your prompt the query - “who won the
2022 world cup in football?”, it will answer correctly with Argentina.

Training LLMs
LLMs are typically trained in 3 stages: pre-training on massive text corpus with a
next-word prediction task, where individual words are masked out, and the model learns
to predict the next word. The second stage is supervised fine-tuning (SFT) the LLM
using instruction-output pairs, where a much smaller curated dataset of instructions and
appropriate output text is used to fine-tune the LLM. The third, and final stage, is the use
of RLHF to fine-tune the model with proximal policy optimization. A human takes the
outputs (often 4 to 9 responses) and ranks the responses based on their preference.
The ranking is used by the reward model to finetune the LLM. Llama 2 has two reward
models - one for helpfulness and one for safety. Current models like Llama 2 use
~10K+ prompts and responses for supervised fine-tuning and ~100K+ human
preference pairs.

Fine-Tuning LLMs
Recently, many pre-trained LLMs have been open-sourced and can be downloaded, and
then fined-tuned on your private data to perform a specific task for you. For example,
maybe you have large amounts of documentation about your company or products. In
this case, you could download a pre-trained LLM (with frozen weights, from somewhere
such as HuggingFace), and then add some extra layers and fine-tune those layers
using your private data. You now have a model that should perform better on queries on
your private data.

Size of LLMs (number of Parameters)
The size of a LLM is typically measured as the number of parameters it contains. The
largest known model, GPT-4, has been speculated to have 1,700 billion parameters.
In contrast, the largest Llama-2 model has 70 billion parameters.

The size of a LLM is important, because certain capabilities only emerge when models
grow beyond certain sizes. In a paper by Wei et al from Google Research, they showed
that mathematical and word skills and instruction following appear in LLMs when they
grow past certain sizes and have been trained for long enough (measured in training
FLOPs).

www.hopsworks.ai/mlops-dictionary - 39

https://www.hopsworks.ai/dictionary/prompt-engineering
https://www.hopsworks.ai/dictionary/retrieval-augmented-llm
https://www.hopsworks.ai/dictionary/in-context-learning-icl
https://magazine.sebastianraschka.com/i/136862014/the-canonical-llm-training-pipeline
https://zenodo.org/record/8186168
https://huggingface.co/models?other=LLM
https://the-decoder.com/gpt-4-has-a-trillion-parameters/
https://huggingface.co/meta-llama/Llama-2-7b
http://www.hopsworks.ai/mlops-dictionary

The number of parameters in a model also determines the size of the model in memory.
For example, in Llama-2, the model parameters in 16-bit precision consume:

● Llama-2-70b with 16-bit precision = 2 bytes * 70 billion = 140 GB of memory

In practice, this means Llama-2-70b will need at least 2 A100 GPUs (80GB) for
inference or fine-tuning.

Proprietary LLMs
The most well-known LLMs released by OpenAI (ChatGPT, GPT-4) are proprietary
models - you are not able to download the models, they are only accessible via a UI on
their website or via API calls. For example, you pay OpenAI to use the higher end LLMs
(GPT-4) and build commercial applications that call their models via APIs. Sometimes,
organizations are legally prevented from using proprietary LLMs as they are restricted on
what type of data they can send to an external proprietary LLM (e.g., due to data
privacy). You can customize responses from proprietary LLMs with prompt engineering,
but you cannot fine-tune them.

Open-Source LLMs
There are now hundreds of open-source LLMs available. Currently, the most powerful
is Llama-2, released by Meta in July 2023, with 70 billion parameters. Open-source
LLMs have the advantage over proprietary models that they can be fine-tuned for
task-specific goals. Organizations may have valuable proprietary data (such as their
customer help data or internal documentation) that they can leverage to build custom
LLMs with fine-tuning. Open-source LLMs also enable organizations to deploy models
within their own data centers or cloud accounts, so sensitive data will not leave their
network. However, the largest open-source LLMs are still an order of magnitude smaller
than the largest proprietary LLMs, so their performance is still not as good for general
purpose language tasks.

● LLM temperature
What are LLMs (large language models)?
LLMsIn recent years, Large Language Models (LLMs) have stood out as revolutionary
tools that are capable of crafting human-quality texts, including producing coherent and
contextually relevant text, translating languages elegantly, and dreaming up creative
content on demand. Beneath the surface, there lies a fascinating factor that affects the
nature and quality of the generated output, which is known as LLM temperature.

At its core, LLM temperature controls the balance between playing more safely and
exploring new possibilities - exploration versus exploitation in the model's output. Lower
temperatures favor exploiting the patterns LLMs have already learned and mastered,
making the outputs more predictable and reliable. This is ideal when accurate and

www.hopsworks.ai/mlops-dictionary - 40

https://www.cursor.so/blog/llama-inference
https://github.com/Hannibal046/Awesome-LLM
http://www.hopsworks.ai/mlops-dictionary

factual information is needed. Conversely, higher temperatures encourage exploration,
meaning that the LLMs get adventurous. It ventures beyond the familiar patterns and
increases the chance of being surprising and creative, potentially yielding more diverse,
albeit riskier, outputs. This can be useful for brainstorming ideas.

How does LLM Temperature work?
LLMs are usually trained on large amounts of text data. They learn the patterns of how
likely words appear together or apart, building a complex network of possibilities. When
LLMs generate output, there are usually a few candidates in the vocabulary for each
word and each candidate word has a certain likelihood of being chosen. Those
likelihoods are represented by a set of logits. Then the softmax function takes the set of
logits and transforms them into probabilities that sum to 1. A temperature value in the
softmax function scales these logits, influencing the final possibilities calculated for each
candidate word and affecting the selection of the next word in the output.

How a word is output by an LLM

The Softmax Function with LLM Temperature
Mathematically, the softmax function for a given candidate word i with logits yi is defined
as:

www.hopsworks.ai/mlops-dictionary - 41

http://www.hopsworks.ai/mlops-dictionary

Where:
e is Euler's number (approximately 2.71828).
T is the LLM temperature parameter.
n is the size of the vocabulary.

From the above softmax function, we can see that the LLM temperature acts as a control
mechanism. It affects the probabilities assigned to each candidate word by scaling the
logits.

The Impact of LLM Temperature
Lower Temperature (𝑇<1): When 𝑇 is small, the softmax function magnifies differences
between logits, leading to sharper probability distributions. This means that the model
becomes more confident in selecting words with higher logits, making the LLM prioritize
the most probable next word and effectively reducing randomness in the generated text.
As a result, lower temperatures promote the exploitation of high-confidence predictions,
often yielding more deterministic and conservative outputs.

Higher Temperature (𝑇>1): On the other hand, increasing 𝑇 softens the differences
between logits, resulting in flatter probability distributions. Less probable words become
more likely contenders. This encourages the model to explore a wider range of word
choices, even those with lower logits. Consequently, higher temperatures foster diversity
in the generated text, allowing the model to produce more varied and creative outputs.

Sampling Strategies
In practice, LLMs may employ different sampling strategies to incorporate LLM
temperature during text generation. For example, at 𝑇=0, greedy sampling is usually
employed. The model selects the word with the highest probability, effectively choosing
the most confident prediction at each step.

How to choose the perfect LLM Temperature?
There's no magic number for LLM temperature. The ideal setting is based on the specific
goal. Choosing the most suitable LLM temperature involves balancing various factors
such as coherence, diversity, and specific task requirements. While there's no
one-number-fits-all solution, here are some strategies:

www.hopsworks.ai/mlops-dictionary - 42

http://www.hopsworks.ai/mlops-dictionary

Task Requirements
Coherence: If your task requires generating text that closely follows the input context or
maintains a formal tone, such as summarizing research papers or writing technical
reports, lower temperatures (𝑇<1 or maybe around 0.5) may be preferable to ensure
high coherence and accuracy.

Creativity and Diversity: For tasks where creativity and diversity are valued, such as
creative writing or brainstorming, higher temperatures (𝑇>1) can encourage the
generation of more varied and innovative outputs.

Experiments
Experiment with different temperature values and evaluate the quality of the generated
outputs. The evaluation can be done via human or user feedback. Monitor and observe
how varying temperature selections impact the qualitative feedback on the performance
of the LLMs. It is also worth noting that the optimal LLM temperature may not stay the
same as the context or tasks evolve. Periodic reassessment and iteration are often
beneficial.

Task-Specific Tuning
In some cases, fine-tuning the LLM temperature parameter for specific tasks or datasets
may be necessary to achieve optimal performance. Train the LLM on domain-specific
data and adjust the temperature based on the specific requirements of the task.

Finding the ideal temperature for an LLM is a delicate balancing act. Push it too high,
and you risk nonsensical outputs; too low, and it becomes repetitive. It takes practice
and experimentation to find the sweet spot. Furthermore, the LLM temperature value
isn't the only factor affecting output. The prompt or question you provide to the LLM also
plays a crucial role. A strong prompt with clear instructions might work well with a higher
temperature, while a more open-ended one could benefit from a lower temperature for
better exploration.

M
● ML System

What is a ML System?
A machine learning system is a computer system that is responsible for managing the
data and the programs that train and operate the machine learning models that power an
AI-enabled application or service.

Four types of Machine Learning Systems
Machine learning systems (ML systems) can be categorized into four different types:

www.hopsworks.ai/mlops-dictionary - 43

https://www.hopsworks.ai/dictionary/ml
http://www.hopsworks.ai/mlops-dictionary

● real-time interactive applications that take user input and use a model to make a
prediction;

● batch applications that use models to make predictions on a schedule;
● stream processing applications that use models to make predictions on

streaming data;
● embedded/edge applications that use models and sensors in resource

constrained environments.

Real-time, interactive applications differ from the other machine learning systems as they
often use models as external network callable services that are hosted on standalone
model serving infrastructure. Batch, stream processing, and embedded/edge machine
learning systems typically embed the model as part of the system and invoke the model
via a function or inter-process call.

The following are examples of the four different types of machine learning systems:

Batch ML Systems
● Dashboards are built from predictions made by a batch ML system.

Predict Air Quality - take observations of air quality from sensors and use
weather as features for predicting air quality. A dashboard can predict air quality
by using the weather forecast (input features) to predict air quality (target).

● Interactive Systems that use predictions made by a batch ML system.
Google Photos Search - when your photos are uploaded to Google, it runs a
classification model to identify things and places in the photo. Those
things/places are indexed against the photo, so that you can search in free-text
to find matching photos. For example, if you type in “bike”, it will show you your
photos that have one or more bicycles in them.

Stream Processing ML Systems
● Real-time pattern matching systems that do not require user input are often

stream processing ML systems.
Network Intrusion Detection - if you use stream processing to extract features
about all traffic in a network, you can then use a model to predict anomalies such
as network intrusion.

Real-Time ML Systems
● Interactive systems that make predictions based on user input.

ChatGPT is an example of a system that takes user input (a prompt) and returns
an answer in text.

www.hopsworks.ai/mlops-dictionary - 44

https://www.youtube.com/watch?v=dgBFShBuV4k
https://developers.google.com/machine-learning/practica/image-classification
https://chat.openai.com/auth/login
http://www.hopsworks.ai/mlops-dictionary

Tiktok builds its personalized recommendations engine using ML and a real-time feature
store that provides historical user information and context to better personalize
recommendations.

Embedded or Edge ML Systems
● Real-time pattern matching systems that run on resource-constrained or network

detached devices.
Tesla Autopilot is a driver assist system powered by ML that uses sensors from
cameras and other systems to help the ML models make predictions about what
driving actions to take (steering, acceleration, braking, etc).

Offline/Online Architecture for ML Systems

Machine learning systems are both trained and operated using cleaned and processed
data (called features), created by a program called a feature pipeline. The feature
pipeline writes its output feature data to a feature store that feeds data to both the
training pipeline (that trains the model) and the inference pipeline. The inference
pipeline makes predictions on new data that comes from the feature pipeline. Real-time,
interactive ML systems also take new data as input from the user. Feature pipelines and
inference pipelines are operational services - part of the operational ML system. In
contrast, a ML system also has an offline component - model training. The training of
models is typically not an operational part of a ML system. Training pipelines can be run
on separate systems using separate resources (e.g., GPUs). Models are sometimes
retrained on a schedule (e.g., once day/week/etc), but are often retrained when a new
improved model becomes available, e.g., because new training data is available or the
existing model’s performance has degraded and the model needed to be retrained on
more recent data.

www.hopsworks.ai/mlops-dictionary - 45

https://arxiv.org/pdf/2209.07663.pdf
https://en.wikipedia.org/wiki/Tesla_Autopilot
https://www.hopsworks.ai/dictionary/feature
https://www.hopsworks.ai/dictionary/feature-pipeline
https://www.hopsworks.ai/dictionary/feature-store
https://www.hopsworks.ai/dictionary/training-pipeline
https://www.hopsworks.ai/dictionary/training-pipeline
https://www.hopsworks.ai/dictionary/inference-pipeline
https://www.hopsworks.ai/dictionary/inference-pipeline
http://www.hopsworks.ai/dictionary/model-training
http://www.hopsworks.ai/dictionary/model-performance
http://www.hopsworks.ai/mlops-dictionary

● Model Architecture
What is model architecture in machine learning?
A model architecture is the choice of a machine learning algorithm along with the
underlying structure or design of the machine learning model. Model architecture
consists of layers of interconnected nodes or neurons, where each layer of the model
performs a specific function, such as data preprocessing, feature extraction, or
prediction.

What type of model architecture should I use for my prediction problem?
The choice of the model architecture depends on the type of problem being solved, the
size and complexity of the dataset, and the available computing resources. Popular
model architectures include decision trees for smaller datasets, and deep neural
networks for larger datasets, including feedforward neural networks, convolutional neural
networks, and transformers. The architecture of a machine learning model is a critical
factor that determines its accuracy and performance, and it is often optimized through a
process called hyperparameter tuning,

● Model Bias
What is model bias in machine learning?
Model bias refers to the presence of systematic errors in a model that can cause it to
consistently make incorrect predictions. These errors can arise from many sources,
including the selection of the training data, the choice of features used to build the
model, or the algorithm used to train the model.

What types of model bias are there?
Common forms of model bias include selection bias, measurement bias, and algorithmic
bias. Selection bias occurs when the training data is not representative of the population
being modeled, leading to biased predictions. Measurement bias occurs when the
measurements used to train the model are inaccurate or imprecise, leading to biased
estimates. Algorithmic bias occurs when the algorithm used to train the model produces
biased predictions due to inherent biases in the algorithm or the data used to train it.

How do you prevent bias in ML models?
You can prevent selection bias by ensuring your training data is representative of the
different groups that your model will make predictions for. You can use evaluation sets
(slices of your test set with data from groups identified of being at risk of bias) to
evaluate your model performance across different groups (e.g., based on gender,
ethnicity, location, etc) and identify any performance differences across those groups.

www.hopsworks.ai/mlops-dictionary - 46

http://www.hopsworks.ai/mlops-dictionary

P
● Parameter-Efficient Fine-Tuning (PEFT) of LLMs

What is Parameter-Efficient Fine-Tuning (PEFT) of LLMs?
Parameter-Efficient Fine-Tuning (PEFT) enables you to fine-tune a small subset of
parameters in a pretrained LLM. The main idea is that you freeze the parameters of a
pre-trained LLM, add some new parameters, and fine-tune the new parameters on a new
(small) training dataset. Typically, the new training data is specialized for the new task
you want to fine-tune your LLM for (e.g., for the clinical domain).

What are examples of PEFT techniques?
Adapters add tunable layers to the various transformer blocks of an LLM. Prefix tuning
adds trainable tensors to each transformer block.

LoRA (Low-rank adaptation of large language models) has become a widely used
technique to fine-tune LLMs. An extension, known as QLoRA, enables fine-tuning on
quantized weights, such that even large models such as Llama-2 can be trained on a
single GPU. The QLoRA paper states that “ [QLoRA] reduces memory usage enough to
finetune a 65B parameter model on a single 48GB GPU while preserving full 16-bit fine
tuning task performance. QLoRA backpropagates gradients through a frozen, 4-bit
quantized pretrained language model into Low Rank Adapters (LoRA).”

Why is Parameter-Efficient Fine-Tuning important?
Fine-tuning a Large-Language Model (LLMs) has traditionally required retraining its
entire set of parameters. However, with even open-source models, such as Llama-2-70b
requiring 140GB of GPU memory, this approach is computationally expensive. PEFT
enables you to fine-tune a LLM with less resources.

R
● Retrieval Augmented Generation (RAG) for LLMs?

What is Retrieval Augmented Generation (RAG) for LLMs?
Retrieval-augmented generation (RAG) for large language models (LLMs) aims to
improve prediction quality by using an external datastore at inference time to build a
richer prompt that includes some combination of context, history, and recent/relevant
knowledge (RAG LLMs). RAG LLMs can outperform LLMs without retrieval by a
large margin with much fewer parameters, and they can update their knowledge by
replacing their retrieval corpora, and provide citations for users to easily verify and
evaluate the predictions.

www.hopsworks.ai/mlops-dictionary - 47

https://arxiv.org/abs/2307.03042
https://magazine.sebastianraschka.com/p/finetuning-llms-with-adapters#:~:text=The%20idea%20of%20parameter%2Defficient,the%20pretrained%20LLM%20remain%20frozen.
https://magazine.sebastianraschka.com/p/understanding-parameter-efficient
https://arxiv.org/pdf/2106.09685.pdf
https://www.hopsworks.ai/dictionary/llms-large-language-models
https://arxiv.org/pdf/2305.14314.pdf
http://www.hopsworks.ai/dictionary/fine-tuning-llms
https://acl2023-retrieval-lm.github.io/
https://acl2023-retrieval-lm.github.io/
http://www.hopsworks.ai/mlops-dictionary

The most common systems used to provide external data for RAG LLMs are vector
databases and feature stores. RAG for LLMs works because of the ability of LLMs to
perform in-context learning.

RAG for LLMs

RAG integrates information retrieval (or searching) into LLM text generation. It uses the
user input prompt to retrieve external “context” information from a data store that is then
included with the user-entered prompt to build a richer prompt containing context
information that otherwise would not have been available to the LLM. Some examples of
context information used by RAG include:

● real-time context (the weather, your location, etc);
● user-specific information (orders the user has made at this website, actions the

user has taken on the website, the user’s status, etc);
● relevant factual information (documents not included in the LLM’s training data -

either because they are private or they were updated after the LLM was trained).

Why is there a need for RAG LLMs?
Pre-trained LLMs (foundation models) do not learn over time, often hallucinate, and may
leak private data from the training corpus. To overcome these limitations, there has been
growing interest in retrieval-augmented generation which incorporate a vector database
and/or feature store with their LLM to provide context to prompts, also known as RAG
LLMs.

What data systems are used for RAG LLMs?
Vector databases are used to retrieve relevant documents using similarity search. Vector
databases can be standalone or embedded with the LLM application (e.g., Chroma

www.hopsworks.ai/mlops-dictionary - 48

http://www.hopsworks.ai/mlops-dictionary

embedded vector database). When structured (tabular) data is needed, an operational
data store, such as a feature store, is typically used. Popular vector databases and
feature stores are Weaviate and Hopsworks that both provide time-unlimited free tiers.

How does RAG compare with Fine-Tuning?
Fine-tuning takes a pre-trained LLM and further trains the model on a smaller dataset,
often with data not previously used to train the LLM, to improve the LLM’s performance
for a particular task.

LLMs can be extended with both RAG and Fine-Tuning

In the above figure, we can see that fine-tuning is appropriate when you want to
customize a LLM to perform well in a particular domain using private data. For example,
you can fine-tune a LLM to become better at producing Python programs by further
training the LLM on high-quality Python source code.

In contrast, you should use RAG when you are able to augment your LLM prompt with
data that was not known to your LLM at the time of training, such as real-time data,
personal (user) data, or context information useful for the prompt.

Challenges with RAG
One of the challenges in using a vector database is the stochastic nature of similarity
search - how do you know the document you retrieve is actually relevant for the prompt?

www.hopsworks.ai/mlops-dictionary - 49

https://www.hopsworks.ai/
https://about.fb.com/news/2023/08/code-llama-ai-for-coding/
http://www.hopsworks.ai/mlops-dictionary

LLM Question-Answering System using RAG (feature store and vector database) as well as Fine-Tuning

In contrast, using structured data in RAG, such as in the example above is quite
straightforward. In this figure, the user has logged onto the website, so we have the
user’s ID. With the user’s ID, we can retrieve the customer’s recent investments as a list
of strings that we prepend to the prompt. In the above figure, looking up the relevant
document in a vector database to the user’s concern about “rising interest rates affects
property” is more challenging. If you query the vector database with “rising interest rates
affects”, it has a good chance of returning a relevant document, but if you include
“property” in your vector database query, it may return a document related to property,
which is not the context we would like to provide to steer the conversation towards other
investment opportunities.

● RoPE Scaling

What is RoPE Scaling?
Imagine training an LLM on sentences with an average length of 10 words. It performs
brilliantly within this range, understanding the relationships between words and
generating coherent text. But what happens when you throw a 50-word sentence at it?
The LLM might struggle on word order and context. This is the issue of extrapolation.

LLMs rely on Rotary Position Embeddings (RoPE) to understand the relative position of
words within a sequence. Each word in the sequence is assigned a unique embedding
based on its position. This embedding is calculated using a combination of sine and
cosine functions, incorporating its distance from the beginning and end of the sequence.
However, standard RoPE struggles with longer sequences than those encountered
during training. The embedding values for distant words become very similar, making it
difficult for the LLM to distinguish their relative positions. Therefore, the embeddings
become less effective, leading to poor performance. Extrapolation essentially refers to
the maximum sequence length an LLM can handle effectively with its original RoPE
settings. Beyond this limit, performance degrades significantly.

www.hopsworks.ai/mlops-dictionary - 50

http://www.hopsworks.ai/mlops-dictionary

RoPE Scaling modifies the RoPE calculations to improve the model's ability to handle
longer sequences. The core idea is to tweak the base value used in the RoPE
calculations. This value controls the rate at which the sine and cosine functions oscillate,
affecting the embedding distribution. Increasing the base value can spread out the
embeddings, making them more distinct for longer sequences. While decreasing it can
introduce periodicity, allowing the model to handle longer sequences that wrap around
this cycle.

Adjusting the base value can involve either increasing or decreasing it, depending on the
specific LLM architecture. In the paper ‘Scaling Laws of RoPE-based Extrapolation’, it
emphasizes the importance of finding the optimal base value for a specific LLM and task,
often achieved through experimentation and fine-tuning. Once the base value is
adjusted, the LLM undergoes further training with longer sequences. This fine-tuning
helps the model adapt to the modified RoPE embeddings and learn how to interpret the
position information more effectively for unseen lengths.

RoPE Scaling for LLMs
By incorporating RoPE Scaling, LLMs become more adept at handling sequences
exceeding their training data, and process diverse data formats and structures, leading
to more accurate and reliable outputs for various tasks. RoPE Scaling also opens doors
for exploring new applications of LLMs, such as text summarization of longer documents
or code generation for complex functionalities.

While RoPE Scaling offers exciting possibilities, it's essential to consider the following
aspects during implementation:

● While RoPE Scaling improves extrapolation, it may not perfectly generalize to all
sequence lengths.

● Finding the right balance between base value adjustment and fine-tuning is
crucial for optimal performance. Research papers like ‘Scaling Laws of
RoPE-based Extrapolation’ delve deeper into the mathematical foundations of
RoPE Scaling and explore different scaling strategies.

● The success of RoPE Scaling hinges on proper fine-tuning with relevant data
sets for the desired task.

● Modifying RoPE embeddings and retraining the LLM can be computationally
expensive, requiring significant resources.

In conclusion, RoPE Scaling equips developers with a valuable tool to push the
boundaries of LLMs. By overcoming the limitations of extrapolation, we can unlock a new
era of possibilities for LLMs.

www.hopsworks.ai/mlops-dictionary - 51

https://arxiv.org/abs/2310.05209
https://arxiv.org/abs/2310.05209
https://arxiv.org/abs/2310.05209
http://www.hopsworks.ai/mlops-dictionary

S
● Similarity Search

What is similarity search for vector embeddings?
Vector embeddings (or embeddings or vectors) are compressed representations of data
such as text, images, and audio. Vector similarity search (or similarity search for
embeddings) finds the “top K” most similar vectors to a query vector in a vector
database. In order to be able to search for items in a vector database, you need to first
insert vector embeddings for items, then the items will be indexed by the vector
database.

What is similarity search used for?
Similarity search is used to build:

● single modality similarity search where a user supplies an Image/video/audio
that is run through an embedding model to create a vector with which a similarity
search is performed on the vector database to find similar images/video/audio.
Here the similarity search is for the same modality (e.g., use an image to find
images);

● Two-modality similarity search where a user enters a search string (a query) or
the last video they watched, and we augment that with the user’s history and
preferences and context information like what’s trending and with all that data,
we use an embedding model to create a vector. We then look up items (a
different modality from the user search) in a vector database. Two-modality
similarity search is enabled by training models using the two-tower model, where
you have samples where a user query (and its embedding) is linked to an item
the user clicked on (or negatively - the user didn’t click on it).

● Prompt engineering for generative AI tools (LLMs) where you take a user’s
query and retrieve similar text passages stored in a vector database, and add
those text passages as “prompts” to your query. This will better instruct the LLM
how to generate a more relevant, informed response. For example, if you retrieve
recent information from your vector database (not available when the LLM aws
trained), the LLM can give you a correct answer, even though it didn’t know that
data at the time of training;

● Anomaly detection where you supply a vector and search for outliers in the
vector database (outliers are very different from all other vectors in the vector
DB);

● Deduplication and record matching where similarity search can find very similar
(but maybe not 100% identical) items. This can be useful for detecting
plagiarism, for example.

www.hopsworks.ai/mlops-dictionary - 52

https://www.hopsworks.ai/dictionary/embedding
https://www.hopsworks.ai/dictionary/llms-large-language-models
http://www.hopsworks.ai/mlops-dictionary

What indexing algorithms are used for similarity search?
Approximate k-nearest neighbors (ANN) is commonly used to return the k nearest
vectors - exact matching is too computationally expensive. Approximate approaches find
good enough matches without exhaustively checking all the possible matches. Your
ANN algorithms should be configurable to enable you to tradeoff recall (percentage of
results with true top-k nearest neighbors), latency, throughput, and vector insertion time.

Popular approximate approaches include:

● HNSW (Hierarchical Navigable Small Worlds) is a proximity graph indexing and
retrieval algorithm. Upper layers contain only "long connections," while lower
layers have only "short connections" between vectors in the database. HNSW
searches through the graph starting from the uppermost layer moving to the
lowest layer, greedily traversing the graph with the longest inter-vector
connections for the vector closest to our query vector - until at algorithm
termination, you are left with the closest neighbors;

● FAISS (Facebook AI Similarity Search) enables vectors to be compared with L2
(Euclidean) distances or dot products and uses quantization and binary indexes
to reduce search latency at the cost of recall. Compared to HNSW, it does not
build a complex indexing structure, enabling it to be optimized for memory usage
and speed;

● SCANN (Scalable Approximate Nearest Neighbors) uses search space pruning
and quantization for Maximum Inner Product Search and also supports other
distance functions such as Euclidean distance.

T
● Two-Tower Embedding Model

What is a Two-Tower Embedding Model?
The two-tower (or twin-tower) embedding model is a model training method for
connecting embeddings in two different modalities by placing both modalities in the
same vector space. For example, a two-tower model could generate embeddings of both
images and text in the same vector space. Personalized recommendation systems often
use items and user-histories as the two different modalities. The modalities need to be
“grounded”. For example, image and text can be “grounded” by creating training data
where a caption matches an image. Two-tower models are able to map embeddings
from different modalities into the same space by ensuring both modalities have the same
dimension “d”. For example, if the item embedding is of length 100, then the query
embedding dimension should be 100.

www.hopsworks.ai/mlops-dictionary - 53

https://ignite.apache.org/docs/latest/machine-learning/binary-classification/ann#:~:text=An%20approximate%20nearest%20neighbor%20search,good%20as%20the%20exact%20one.
https://www.pinecone.io/learn/hnsw/#:~:text=Hierarchical%20Navigable%20Small%20World%20(HNSW,search%20speeds%20and%20fantastic%20recall.
https://github.com/facebookresearch/faiss
https://github.com/google-research/google-research/tree/master/scann
https://www.hopsworks.ai/dictionary/embedding
https://www.hopsworks.ai/dictionary/training-data
http://www.hopsworks.ai/mlops-dictionary

Personalized recommendations for Products - Linking Two Modalities

The two-tower model for personalized recommendations combines two items and “user
history and context”. That is, given user history and context, can we generate hundreds
of candidate items from a corpus of millions or billions of items? Given those hundreds of
candidates, can personalize the ranking of the candidates to the user’s history and
context (e.g., items that are trending)?

We can create training data for our personalized recommender system that combines
the two modalities by presenting items in response to the user query. The user may click
on some item, purchase another item, place another item in a shopping cart, and not
click on another item. We collect training samples as the combination of the item, a
score for the user's action (0=not clicked, 5=purchased, 1=clicked), and the user’s query,
user history, and context.

www.hopsworks.ai/mlops-dictionary - 54

http://www.hopsworks.ai/mlops-dictionary

What is a two-tower embedding model architecture
Most two-tower architectures are used for personalized search/recommendations, where
you have queries and items as the two modalities. In this case, the two-tower embedding
model architecture is a deep learning model architecture that consists of a query tower
and an item tower. The query tower encodes search query and user profile to query
embeddings, and the item tower encodes the item, store, and location features to item
embeddings.

The probability of a user query resulting in an item being clicked or placed in a shopping
cart is computed using a distance measure (such as the dot product, cosine similarity,
Euclidean distance, or Hadamard product) between the embeddings from two towers.
The query and item tower models are trained jointly on the history of user queries and
item interactions.

Personalized Recommendations/Search with Hopsworks

You can use the Hopsworks platform to manage the collection and usage of feature
data when building two-tower models. Hopsworks includes a feature store, model
registry, and vector database, providing both the online services needed to collect and

www.hopsworks.ai/mlops-dictionary - 55

https://www.hopsworks.ai/the-ml-platform-for-batch-and-real-time-data
https://www.hopsworks.ai/dictionary/feature-store
https://www.hopsworks.ai/dictionary/model-registry
https://www.hopsworks.ai/dictionary/model-registry
http://www.hopsworks.ai/mlops-dictionary

manage training data, and the online infrastructure for candidate retrieval (VectorDB)
and personalized ranking (feature store).

What other types of applications use the twin-tower model architecture?
Bytedance used test/images with ALBERT and Vision transformer twin-tower model
architecture. Another example is the TextGNN Architecture that uses the two tower
structure for decoupled generation of query/keyword embeddings

Image from TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored Search
by Zhu et al

Spotify have used Graph embeddings in combination with a two-tower embedding model
to build a personalized recommendation system for audio books - "unlike music and
podcasts, audiobooks, initially available for a fee, cannot be easily skimmed before
purchase, posing higher stakes for the relevance of recommendations" [De Nadai et al]

Image from Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks
by De Nadai et al

www.hopsworks.ai/mlops-dictionary - 56

https://www.anyscale.com/blog/how-bytedance-scales-offline-inference-with-multi-modal-llms-to-200TB-data
https://www.anyscale.com/blog/how-bytedance-scales-offline-inference-with-multi-modal-llms-to-200TB-data
https://arxiv.org/abs/2101.06323
https://arxiv.org/pdf/2403.05185.pdf
http://www.hopsworks.ai/mlops-dictionary

Can two-tower embedding models be extended to more modalities?
A two-tower embedding model connects vectors in only two different modalities.
Research is ongoing in generalizing to 3 modalities or more. Multi-modal models trained
as N-tower embedding models could potentially connect vectors from N different
modalities.

V
● Vector Database

What is a vector database in ML?
A vector database for machine learning is a database that stores, manages, and
provides semantic query support for embeddings (high-dimensional vectors). The
semantic queries supported are typically similarity search, nearest neighbor search, and
clustering. Vector databases are available as the following: standalone servers, as a
library to embed in an application, or as a capability in an existing database.

When do I need a vector database?
The most popular applications of vector databases are in AI, where you may want to
quickly find similar items (e.g., a matching fashion item in an ecommerce store, or a
matching piece of text for use as a prompt input to a large language model). Similarity
search can also be used to bridge two modalities. For example, you can take a user’s
history and search query (first modality) and match it to the most similar item
(product/video/song/etc) in a catalog (second modality). This two-tower similarity
search method is used for personalized search and recommendation systems.

Why can I not use my existing database?
Some databases have added support for both the storage of vectors and vector
similarity search. In relational databases, Postgres has added vector database support
with pgvector. In document databases, OpenSearch has had vector database support
since 2021 with the kNN plugin, and ElasticSearch added vector database support
recently.

There is a tradeoff to make between using an existing database and a standalone vector
database. There are higher operational costs in managing a new system, but standalone
vector databases tend to have wider support for more ANN algorithms than databases
that support vector storage and similarity search.

What are the most popular ANN algorithms used by Vector Databases?
When you query a vector database, you enter a vector (array of integers) and you ask to

www.hopsworks.ai/mlops-dictionary - 57

http://www.hopsworks.ai/dictionary/similarity-search
https://www.youtube.com/watch?v=tz6Tg-NCFLU&vl=en
https://www.youtube.com/watch?v=tz6Tg-NCFLU&vl=en
https://github.com/pgvector/pgvector
https://opensearch.org/platform/search/vector-database.html
https://www.elastic.co/what-is/vector-search
http://www.hopsworks.ai/mlops-dictionary

return the N, e.g., N=100, most similar vectors. K-nearest neighbor algorithms are
accurate (they find the nearest neighbors) but are too slow to be used in practical
systems. Hence, approximate nearest neighbor (ANN) algorithms are used to find the
closest neighbors (most similar vectors) to an input vector. Typically they use distance
measures to compare vectors, such as L2 (Euclidean) distances or dot products.

Most of the ANN algorithms used in existing vector databases have been written in the
last 5 years (it is a fast moving space), and they generally are designed to favor either
accuracy (recall) or performance (throughput). The three most popular algorithms are:

● hierarchical navigable small worlds network (hnsw),
● faiss-ivf,
● Scann.

For an open-source benchmark with more details, we refer you to ANN Benchmarks.

What are the most popular open-source libraries that existing vector databases build on?
FAISS (Facebook AI Similarity Search) FAISS is an open-source library for efficient
similarity search and clustering of dense vectors. SCANN (Scalable Compressed
Approximate Nearest Neighbors), developed by Google, is an open-source library for
efficient similarity search and approximate nearest neighbor search in high-dimensional
vector spaces. HNSW library is a fast approximate nearest neighbor search library that
is incorporated in many existing vector databases. Some companies have also built their
own proprietary libraries, such asWeaviate.

How do I evaluate the performance of a vector database?
You can perform benchmarks on different vector databases and ANN algorithms by
using one or more appropriate datasets and distance measures. A good place to start is
ANN Benchmarks that includes a github repository with benchmarks for many vector
databases and libraries. The most common benchmarks are:

● write throughput (measured in inserts per second)
● read throughput (measured in queries per second)
● accuracy (measured as a Recall percentage)

www.hopsworks.ai/mlops-dictionary - 58

https://ann-benchmarks.com/
https://github.com/facebookresearch/faiss
https://github.com/google-research/google-research/tree/master/scann
https://github.com/nmslib/hnswlib
https://ann-benchmarks.com/weaviate.html
https://ann-benchmarks.com/
https://ann-benchmarks.com/
http://www.hopsworks.ai/mlops-dictionary

Recall vs Throughput Tradeoffs
A useful property to evaluate for your requirements in benchmarks is accuracy vs
performance for Vector Database, dataset, and ANN algorithm That is,

● Recall (the fraction of true nearest neighbors found, on average over all queries)
vs

● Throughput (the number of queries per second)

Depending on your requirements, you typically need to make a choice to favor an
algorithm that has higher Recall or higher throughput. Different ANN algorithms make
different tradeoffs in favoring throughput or Recall.

● vLLM
What is vLLM?
Nowadays large language models (LLMs) have revolutionized various domains.
However, deploying these models in real-world applications can be challenging due to
their high computational demands. This is where vLLM steps in. vLLM stands for Virtual
Large Language Model and is an active open-source library that supports LLMs in
inferencing and model serving efficiently.

vLLM architecture

vLLM was first introduced in a paper - Efficient Memory Management for Large
Language Model Serving with PagedAttention, authored by Kwon et al. The paper
identifies that the challenges faced when serving LLMs are memory allocation and
measures their impact on performance. Specifically, it emphasizes the inefficiency of
managing Key-Value (KV) cache memory in current LLM serving systems. These
limitations can often result in slow inference speed and high memory footprint.

www.hopsworks.ai/mlops-dictionary - 59

https://docs.vllm.ai/en/latest/
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
http://www.hopsworks.ai/mlops-dictionary

Memory usage and waste in different LLM serving systems.

To address this, the paper presents PagedAttention, an attention algorithm inspired by
virtual memory and paging techniques commonly used in operating systems.
PagedAttention enables efficient memory management by allowing for non-contiguous
storage of attention keys and values. Following this idea, the paper develops vLLM, a
high-throughput distributed LLM serving engine that is built on PagedAttention. vLLM
achieves near-zero waste in KV cache memory, significantly improving serving
performance. Moreover, leveraging techniques like virtual memory and copy-on-write,
vLLM efficiently manages the KV cache and handles various decoding algorithms. This
results in 2-4 times throughput improvements compared to state-of-the-art systems such
as FasterTransformer and Orca. This improvement is especially noticeable with longer
sequences, larger models, and complex decoding algorithms.

Illustration of vLLM’s performance in optimizing memory usage and boosting serving throughput.

www.hopsworks.ai/mlops-dictionary - 60

https://arxiv.org/abs/2309.06180
https://www.hopsworks.ai/dictionary/pagedattention
https://arxiv.org/abs/2309.06180
http://www.hopsworks.ai/mlops-dictionary

What is the core idea in vLLM?

PagedAttention

The attention mechanism allows LLMs to focus on relevant parts of the input sequence
while generating output/response. Inside the attention mechanism, the attention scores
for all input tokens need to be calculated. Existing systems store KV pairs in contiguous
memory spaces, limiting memory sharing and leading to inefficient memory
management.

KV
Cache memory management in existing systems.

PagedAttention is an attention algorithm inspired by the concept of paging in operating
systems. It allows storing continuous KV pairs in non-contiguous memory space by
partitioning the KV cache of each sequence into KV block tables. This way, it enables the
flexible management of KV vectors across layers and attention heads within a layer in
separate block tables, thus optimizing memory usage, reducing fragmentation, and
minimizing redundant duplication.

PagedAttention algorithm.

What are the other techniques used in vLLM for efficient serving?
vLLM doesn't stop at PagedAttention. It incorporates a suite of techniques to further
optimize LLM serving.

● Continuous Batching: Incoming requests are continuously batched together to
maximize hardware utilization and reduce computing waste, minimizing idle time.

www.hopsworks.ai/mlops-dictionary - 61

https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
http://www.hopsworks.ai/mlops-dictionary

Python

Python

Python

● Quantization: vLLM utilizes quantization techniques like FP16 to optimize
memory usage by representing the KV cache in reduced precision, leading to
smaller memory footprints and faster computations.

● Optimized CUDA Kernels: vLLM hand-tunes the code executed on the GPU for
maximum performance. For example, for fused reshape and block write,
optimized kernels are developed to split the new KV cache into blocks, reshape
them for efficient memory access, and save them based on a block table, all
fused into a single kernel to reduce overheads.

How to use vLLM?
vLLM is easy-to-use. Here is a glimpse into how it can be used in Python:

One can install vLLM via pip:

(Recommended) Create a new conda environment.
conda create -n myenv python=3.9 -y
conda activate myenv

Install vLLM with CUDA 12.1.
pip install vllm

Offline inference
Then import the vLLM module into your code and do an offline inference with vLLM’s
engine. The LLM class is to initialize the vLLM engine with a specific built-in LLM model.
The LLM models are by default downloaded from HuggingFace. The SamplingParams
class is to set the parameters for inferencing.

from vllm import LLM, SamplingParams

Then we define an input sequence and set the sampling parameters. Initialize vLLM’s
engine for offline inference with the LLM class and an LLM model:

prompts = ["The future of humanity is"]
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95)

www.hopsworks.ai/mlops-dictionary - 62

http://www.hopsworks.ai/mlops-dictionary

Python

Python

Python

llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")

Finally, the output/response can be generated by:

Responses = llm.generate(prompts, sampling_params)
print(f"Prompt: { Responses[0].prompt!r}, Generated text: {
Responses[0].outputs[0].text!r}")

The code example can be found here.

Online serving
To use vLLM for online serving, OpenAI’s completions and APIs can be used in vLLM.
The server can be started with Python:

python -m vllm.entrypoints.openai.api_server --model
NousResearch/Meta-Llama-3-8B-Instruct --dtype auto --api-key
token-abc123

To call the server, the official OpenAI Python client library can be used. Alternatively, any
other HTTP client works as well.

from openai import OpenAI
client = OpenAI(

base_url="http://localhost:8000/v1",
api_key="token-abc123",

)

completion = client.chat.completions.create(
model="NousResearch/Meta-Llama-3-8B-Instruct",
messages=[
{"role": "user", "content": "Hello!"}

www.hopsworks.ai/mlops-dictionary - 63

https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py
http://www.hopsworks.ai/mlops-dictionary

]
)

print(completion.choices[0].message)

More examples can be found on the official vLLM documentation.

What are the use cases of vLLM?
vLLM's efficient operation of LLMs opens numerous practical applications. Here are
some compelling scenarios that highlight vLLM's potential:

● Revolutionizing Chatbots and Virtual Assistants: With its efficient serving
support, vLLM can contribute chatbots and virtual assistants to hold nuanced
conversations, understand complex requests, and respond with human-like
empathy. By enabling faster response times and lower latency, vLLM ensures
smoother interactions. Additionally, vLLM empowers chatbots to access and
process vast amounts of information, allowing them to provide users with
comprehensive and informative answers. vLLM's ability to handle diverse
creative text formats can be harnessed to craft personalized responses that
address the user's specific needs and preferences. This combination of speed,
knowledge, and adaptability can transform chatbots from simple FAQ machines
into invaluable tools for customer service, technical support, and even emotional
counseling.

● Democratizing Code Generation and Programming Assistance: The field of
software development is constantly evolving, and keeping pace with the latest
technologies can be challenging. vLLM can act as a valuable companion for
programmers of all experience levels. By leveraging its code-understanding
capabilities, vLLM can suggest code completions, identify potential errors, and
even recommend alternative solutions to coding problems. This can significantly
reduce development time and improve code quality. vLLM's ability to generate
documentation can also alleviate a major pain point for developers.
Automatically generating clear and concise documentation based on the written
code would save developers valuable time and effort, and the quality and
consistency of the documentation can also be controlled. vLLM can be used to
create educational tools that introduce coding concepts in a fun and interactive
way, making programming more accessible to students and aspiring developers.

www.hopsworks.ai/mlops-dictionary - 64

https://docs.vllm.ai/en/latest/
http://www.hopsworks.ai/mlops-dictionary

